Weather noise leading to El Niño diversity in an ocean general circulation model

An Erratum to this article is available

This article has been updated

Abstract

The frequency of Central Pacific (CP) El Niño occurrences has increased since the late 1990s. In spite of a wealth of studies, however, the physical mechanisms that have caused the change remain unclear. We hypothesize that atmospheric weather noise plays a role in these occurrences. To test this hypothesis, we conduct four simulations using Modular Ocean Model version 4 (MOM4) forced by atmospheric weather noise. In this study, the atmospheric weather noise is defined as the random noise obtained from the European Centre for Medium-Range Weather Forecasts atmospheric datasets. In the first experiment, MOM4 is forced by atmospheric weather noise before 1999 along with the corresponding climatological mean state. In the second experiment, MOM4 is forced by atmospheric weather noise after 1999 along with the corresponding climatological mean state. The third and fourth experiments are similar to the first two experiments except the time periods of the climatological mean state are switched. The results show that atmospheric weather noise may play a more important role than the climatological mean state in the increase of CP El Niño occurrences. This implies that the El Niño diversity could be caused by the modulation of atmospheric weather noise. Therefore, it is important to explore how the atmospheric weather noise might change in light of global warming.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Change history

References

  1. Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 125:2293–2315

    Article  Google Scholar 

  2. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res:Oceans 112:C11007

    Article  Google Scholar 

  3. Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific 1. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  4. Blanke B, Neelin JD, Gutzler D (1997) Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J Clim 10:1473–1486

    Article  Google Scholar 

  5. Cai W et al (2015) ENSO and greenhouse warming. Nat Clim Change. doi:10.1038/NCLIMATE2743

    Google Scholar 

  6. Capotondi A et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96:921–938

    Article  Google Scholar 

  7. Chen D, Lian T, Fu C, Cane MA, Tang Y, Murtugudde R, Zhou L (2015) Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci 8:339–345

    Article  Google Scholar 

  8. Chung P-H, Li T (2013) Interdecadal relationship between the mean state and El Niño types. J Clim 26:361–379

    Article  Google Scholar 

  9. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Bauer P (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  10. Eisenman I, Yu L, Tziperman E (2005) Westerly wind bursts: ENSO’s tail rather than the dog? J Clim 18:5224–5238

    Article  Google Scholar 

  11. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2015) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn 44:1381–1401

    Article  Google Scholar 

  12. Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4. GFDL Ocean Group Tech Rep 5:342

    Google Scholar 

  13. Griffies S, Gnanadesikan A, Dixon KW, Dunne J, Gerdes R, Harrison MJ, Spelman MJ (2005) Formulation of an ocean model for global climate simulations. Ocean Sci 1:45–79

    Article  Google Scholar 

  14. Griffies SM, Schmidt M, Herzfeld M (2009) Elements of MOM4P1. GFDL Ocean Group Tech Rep 6:444

    Google Scholar 

  15. Hu S, Fedorov AV (2016) Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci 113:2005–2010

    Article  Google Scholar 

  16. Hunke E, Dukowicz J (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867

    Article  Google Scholar 

  17. Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  18. Kim JS, Kim KY, Yeh SW (2012) Statistical evidence for the natural variation of the central Pacific El Niño. J Geophys Res Oceans 117:C06014

    Google Scholar 

  19. Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11:2804–2822

    Article  Google Scholar 

  20. Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  21. Larkin NK, Harrison D (2005) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705

    Article  Google Scholar 

  22. Lee T, Mcphaden MJ (2010) Increasing intensity of El Niño in the central–equatorial Pacific. Geophys Res Lett 37:L14603

    Google Scholar 

  23. Lee S, DiNezio P, Chung ES, Yeh SW, Wittenberg A, Wang C (2015) Spring persistence, transition and resurgence of El Nino. Geophys Res Lett 23:8578–8585

    Google Scholar 

  24. Lopez H, Kirtman BP (2013) Westerly wind bursts and the diversity of ENSO in CCSM3 and CCSM4. Geophys Res Lett 40:4722–4727

    Article  Google Scholar 

  25. Lyon B, Barnston AG, DeWitt DG (2014) Tropical pacific forcing of a 1998–1999 climate shift: observational analysis and climate model results for the boreal spring season. Clim Dyn 43:893–909

    Article  Google Scholar 

  26. McPhaden MJ (1999) Climate oscillation: genesis and evolution of the 1997–98 El Nino. Science 283:950–954

    Article  Google Scholar 

  27. Mcphaden M, Lee T, Mcclurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett. doi:10.1126/science.1132588

    Google Scholar 

  28. Newman M, Shin SI, Alexander MA (2011) Natural variation in ENSO flavors. Geophys Res Lett 38:L14705. doi:10.1029/2011GL047658

    Article  Google Scholar 

  29. Philander S (1985) El Niño and La Niña. Atmos Res 42:2652–2662

    Article  Google Scholar 

  30. Picaut J, Masia F, DuPenhoat Y (1997) An advective–reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666

    Article  Google Scholar 

  31. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/southern oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  32. Roulston MS, Neelin JD (2000) The response of an ENSO model to climate noise, weather noise and intraseasonal forcing. Geophys Res Lett 27:3723–3726

    Article  Google Scholar 

  33. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi:10.1029/2011GL047364

    Article  Google Scholar 

  34. Tziperman E, Yu L (2007) Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J Clim 20:2760–2768

    Article  Google Scholar 

  35. Tziperman E, Cane MA, Zebiak SE, Xue Y, Blumenthal B (1998) Locking of El Niño’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J Clim 11:2191–2199

    Article  Google Scholar 

  36. Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Technol 17:525–531

    Article  Google Scholar 

  37. Wittenberg AT (2004) Extended wind stress analyses for ENSO. J Clim 17:2526–2540

    Article  Google Scholar 

  38. Xiang B, Wang B, Li T (2013) A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Clim Dyn 41:327–340

    Article  Google Scholar 

  39. Yeh S-W, Jhun J-G, Kang I-S, Kirtman BP (2004) The decadal ENSO variability in a hybrid coupled model. J Clim 17:1225–1238

    Article  Google Scholar 

  40. Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  41. Yeh S-W, Kirtman BP, Kug JS, Park W, Latif M (2011) Natural variability of the central Pacific El Nino event on multi-centennial timescales. Geophys Res Lett 38:L02704

    Article  Google Scholar 

  42. Yeh S-W, Kug J-S, An S-I (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia-Pac J Atmos Sci 50:69–81

    Article  Google Scholar 

  43. Yeh S-W, Wang X, Wang C, Dewitte B (2015) On the relationship between the north Pacific climate variability and the central Pacific El Niño. J Clim 28:663–677

    Article  Google Scholar 

  44. Yu J-Y, Kim ST (2010) Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett. doi:10.1029/2010GL044082

    Google Scholar 

  45. Yu J-Y, Kao P-K, Paek H, Hsu H-H, Hung C-W, Lu M-M, An S-I (2015) Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J Clim 28:651–662

    Article  Google Scholar 

  46. Zhang R-H, Wang G, Chen D, Busalacchi A, Hackert E (2010) Interannual biases induced by freshwater flux and coupled feedback in the tropical Pacific. Mon Weather Rev 138:1715–1737

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Yeh.

Additional information

This paper is a contribution to the special collection on ENSO Diversity. The special collection aims at improving understanding of the origin, evolution, and impacts of ENSO events that differ in amplitude and spatial patterns, in both observational and modeling contexts, and in the current as well as future climate scenarios. This special collection is coordinated by Antonietta Capotondi, Eric Guilyardi, Ben Kirtman and Sang-Wook Yeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, JW., Yeh, SW. & Jo, HS. Weather noise leading to El Niño diversity in an ocean general circulation model. Clim Dyn 52, 7235–7247 (2019). https://doi.org/10.1007/s00382-016-3438-3

Download citation

Keywords

  • El Niño diversity
  • Weather noise
  • MOM4
  • Mean state
  • CP and EP El Niño