How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble

Abstract

The extratropical precipitation response to global warming is investigated within a 30-member initial condition climate model ensemble. As in observations, modeled cyclonic precipitation contributes a large fraction of extratropical precipitation, especially over the ocean and in the winter hemisphere. When compared to present day, the ensemble projects increased cyclone-associated precipitation under twenty-first century business-as-usual greenhouse gas forcing. While the cyclone-associated precipitation response is weaker in the near-future (2016–2035) than in the far-future (2081–2100), both future periods have similar patterns of response. Though cyclone frequency changes are important regionally, most of the increased cyclone-associated precipitation results from increased within-cyclone precipitation. Consistent with this result, cyclone-centric composites show statistically significant precipitation increases in all cyclone sectors. Decomposition into thermodynamic (mean cyclone water vapor path) and dynamic (mean cyclone wind speed) contributions shows that thermodynamics explains 92 and 95% of the near-future and far-future within-cyclone precipitation increases respectively. Surprisingly, the influence of dynamics on future cyclonic precipitation changes is negligible. In addition, the forced response exceeds internal variability in both future time periods. Overall, this work suggests that future cyclonic precipitation changes will result primarily from increased moisture availability in a warmer world, with secondary contributions from changes in cyclone frequency and cyclone dynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Barnes EA, Polvani L (2013) Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J Clim 26:7117–7135. doi:10.1175/JCLI-D-12-00536.1

    Article  Google Scholar 

  2. Bauer M, Del Genio AD (2006) Composite analysis of winter cyclones in a GCM: influence on climatological humidity. J Clim 19:1652–1672. doi:10.1175/JCLI3690.1

    Article  Google Scholar 

  3. Bengtsson L, Hodges KI, Esch M, Keenlyside N, Kornblueh L, Luo JJ, Yamagata T (2007) How may tropical cyclones change in a warmer climate? Tellus Ser A Dyn Meteorol Oceanogr 59:539–561. doi:10.1111/j.1600-0870.2007.00251.x

    Article  Google Scholar 

  4. Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301. doi:10.1175/2008JCLI2678.1

    Article  Google Scholar 

  5. Blackmon ML (1976) A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J Atmos Sci 33:1607–1623. doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2

    Article  Google Scholar 

  6. Bodas-Salcedo A, Williams KD, Field PR, Lock AP (2012) The surface downwelling solar radiation surplus over the southern ocean in the met office model: the role of midlatitude cyclone clouds. J Clim 25:7467–7486. doi:10.1175/JCLI-D-11-00702.1

    Article  Google Scholar 

  7. Bony S, Dufresne J-L, Le Treut H, Morcrette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86. doi:10.1007/s00382-003-0369-6

    Article  Google Scholar 

  8. Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S (2013) Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci 6:447–451. doi:10.1038/ngeo1799

    Article  Google Scholar 

  9. Booth JF, Wang S, Polvani L (2013) Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments. Clim Dyn 41:787–802. doi:10.1007/s00382-012-1472-3

    Article  Google Scholar 

  10. Catto JL, Jakob C, Berry G, Nicholls N (2012) Relating global precipitation to atmospheric fronts. Geophys Res Lett 39:1–6. doi:10.1029/2012GL051736

    Article  Google Scholar 

  11. Catto JL, Jakob C, Nicholls N (2015) Can the CMIP5 models represent winter frontal precipitation? Geophys Res Lett 42:8596–8604. doi:10.1002/2015GL066015

    Article  Google Scholar 

  12. Chang EKM, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res Atmos 117:1–19. doi:10.1029/2012JD018578

    Google Scholar 

  13. Chang EKM, Zheng C, Lanigan P, Yau AMW, Neelin JD (2015) Significant modulation of variability and projected change in California winter precipitation by extratropical cyclone activity. Geophys Res Lett 42:5983–5991. doi:10.1002/2015GL064424

    Article  Google Scholar 

  14. Emori S, Brown SJ (2005) Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys Res Lett 32:1–5. doi:10.1029/2005GL023272

    Article  Google Scholar 

  15. Field PR, Wood R (2007) Precipitation and cloud structure in midlatitude cyclones. J Clim 20:233–254. doi:10.1175/JCLI3998.1

    Article  Google Scholar 

  16. Field PR, Gettelman A, Neale RB, Wood R, Rasch PJ, Morrison H (2008) Midlatitude cyclone compositing to constrain climate model behavior using satellite observations. J Clim 21:5887–5903. doi:10.1175/2008JCLI2235.1

    Article  Google Scholar 

  17. Finnis J, Holland MM, Serreze MC, Cassano JJ (2007) Response of Northern Hemisphere extratropical cyclone activity and associated precipitation to climate change, as represented by the community climate system model. J Geophys Res Biogeosci 112:1–14. doi:10.1029/2006JG000286

    Article  Google Scholar 

  18. Fyfe JC (2003) Extratropical Southern Hemisphere cyclones: harbingers of climate change? J Clim 16:2802–2805. doi:10.1175/1520-0442(2003)016<2802:ESHCHO>2.0.CO;2

    Article  Google Scholar 

  19. Govekar PD, Jakob C, Catto J (2014) The relationship between clouds and dynamics in Southern Hemisphere extratropical cyclones in the real world and a climate model. J Geophys Res Atmos 119:6609–6628. doi:10.1002/2013JD020699

    Article  Google Scholar 

  20. Harvey BJ, Shaffrey LC, Woollings TJ, Zappa G, Hodges KI (2012) How large are projected 21st century storm track changes. Geophys Res Lett 39:1–5. doi:10.1029/2012GL052873

    Article  Google Scholar 

  21. Hawcroft MK, Shaffrey LC, Hodges KI, Dacre HF (2012) How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys Res Lett 39:1–7. doi:10.1029/2012GL053866

    Article  Google Scholar 

  22. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi:10.1175/JCLI3990.1

    Article  Google Scholar 

  23. Hoskins BJ, Hodges KI (2005) A new perspective on Southern Hemisphere storm tracks. J Clim 18:4108–4129. doi:10.1175/JCLI3570.1

    Article  Google Scholar 

  24. Hurrell JW et al (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. doi:10.1175/BAMS-D-12-00121.1

    Article  Google Scholar 

  25. Kay JE et al (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349. doi:10.1175/BAMS-D-13-00255.1

    Article  Google Scholar 

  26. Klein SA, Jakob C (1999) Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Weather Rev 127:2514–2531. doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2

    Article  Google Scholar 

  27. Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dyn 26:713–728. doi:10.1007/s00382-006-0110-3

    Article  Google Scholar 

  28. Lau N-C, Crane MW (1995) A satellite view of the synoptic-scale organization of cloud properties in midlatitude and tropical circulation systems. Mon Weather Rev 123:1984–2006

    Article  Google Scholar 

  29. Li M, Woollings T, Hodges K, Masato G (2014) Extratropical cyclones in a warmer, moister climate: a recent Atlantic analogue. Geophys Res Lett 41:8594–8601. doi:10.1002/2014GL062186

    Article  Google Scholar 

  30. Naud CM, Posselt DJ, Van Den Heever SC (2012) Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus Southern hemisphere warm fronts. J Clim 25:5135–5151. doi:10.1175/JCLI-D-11-00569.1

    Article  Google Scholar 

  31. Neu U et al (2013) Imilast: a community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Am Meteorol Soc 94:529–547. doi:10.1175/BAMS-D-11-00154.1

    Article  Google Scholar 

  32. Pfahl S, Sprenger M (2016) On the relationship between extratropical cyclone precipitation and intensity. Geophys Res Lett. doi:10.1002/2016GL068018

    Google Scholar 

  33. Polvani LM, Previdi M, Deser C (2011) Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys Res Lett 38:1–6. doi:10.1029/2011GL046712

    Article  Google Scholar 

  34. Power SB, Delage F, Colman R, Moise A (2012) Consensus on twenty-first-century rainfall projections in climate models more widespread than previously thought. J Clim 25:3792–3809. doi:10.1175/JCLI-D-11-00354.1

    Article  Google Scholar 

  35. Serreze MC (1995) Climatological aspects of cyclone development and decay in the Arctic. Atmos Ocean 33:1–23. doi:10.1080/07055900.1995.9649522

    Article  Google Scholar 

  36. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans A Math Phys Eng Sci 365:2053–2075. doi:10.1098/rsta.2007.2076

    Article  Google Scholar 

  37. Willison J, Robinson WA, Lackmann GM (2013) The importance of resolving mesoscale latent heating in the North Atlantic storm track. J Atmos Sci 70:2234–2250. doi:10.1175/JAS-D-12-0226.1

    Article  Google Scholar 

  38. Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136:856–868. doi:10.1002/qj.625

    Article  Google Scholar 

  39. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:1–4. doi:10.1029/2005GL023684

    Article  Google Scholar 

  40. Zappa G, Shaffrey LC, Hodges KI, Sansom PG, Stephenson DB (2013) A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J Clim 26:5846–5862. doi:10.1175/JCLI-D-12-00573.1

    Article  Google Scholar 

  41. Zappa G, Hawcroft MK, Shaffrey L, Black E, Brayshaw DJ (2014) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn. doi:10.1007/s00382-014-2426-8

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Isla Simpson for fruitful conversations related to this work, the Yellowstone CESM CSL for computing resources, and the scientists and software engineers that build CESM. This work was funded by start-up funds awarded to J. E. Kay by the University of Colorado Cooperative Institute for Research in Environmental Sciences (CIRES).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vineel Yettella.

Appendix: Construction of cyclone-centric radial grids

Appendix: Construction of cyclone-centric radial grids

The radial grids used in our study are centered on cyclone centers and consist of equally-spaced shells on the sphere with each shell consisting of a desired number of points (Fig. 14).

Fig. 14
figure14

Illustration of a cyclone-centric radial grid. The green points represent model grid points. The black dot is a sample cyclone center. The red points represent the radial grid

Such radial grids have previously been used in Bengtsson et al. (2009) for cyclone compositing purposes. Here we give direct formulas for the construction of such grids.

Consider a cyclone center C identified on the globe at latitude \(\phi\) and longitude \(\uplambda\) where the angles are expressed in radians. The unit vectors \(\overrightarrow {{e_{1} }}\), \(\overrightarrow {{e_{2} }}\), \(\overrightarrow {{e_{3} }}\) at C in the zonal, meridional and radial directions (assuming the center of the Earth to be the origin) respectively are given by

$$\overrightarrow {{e_{1} }} = - \sin \left(\uplambda \right)\widehat{i} + \cos \left(\uplambda \right)\widehat{j}$$
$$\overrightarrow {{e_{2} }} = - \sin \left( \phi \right) \cdot \cos \left(\uplambda \right)\widehat{i} - \sin \left( \phi \right)\sin \left(\uplambda \right)\widehat{j} + \cos \left( \phi \right)\widehat{k}$$
$$\overrightarrow {{e_{3} }} = \cos \left( \phi \right) \cdot \cos \left( \lambda \right)\widehat{i} + \cos \left( \phi \right)\sin \left( \lambda \right)\widehat{j} + \sin \left( \phi \right)\widehat{k}$$

where \(\widehat{i}\), \(\widehat{j}\), \(\widehat{k}\) are the unit vectors of a fixed right-handed coordinate system with origin at the center of the globe.

Let \(s\) be the desired great-circle distance between the shells of the radial grid centered on C and \(m\) be the desired number of shells. Let the desired number of points on each shell be n. Then, the projections \(x\), \(y\), \(z\) of the radial vector joining the origin to the \(q\)th point on the \(p\)th shell are given by

$$x\widehat{i} + y\widehat{i} + z\widehat{k} = R\sin \left( {\frac{ps}{R}} \right)\cos \left( {\frac{2\pi q}{n}} \right)\overrightarrow {{e_{1} }} + R\sin \left( {\frac{ps}{R}} \right)\sin \left( {\frac{2\pi q}{n}} \right)\overrightarrow {{e_{2} }} + R\cos \left( {\frac{2\pi q}{n}} \right)\overrightarrow {{e_{3} }}$$

where \(R\) is the radius of the Earth, \(p\) can range from 1, 2, 3,…, \(m\) and \(q\) from 1,2,3,… \(n\)

The latitude and longitude \(\phi_{p,q}\) and \(\uplambda_{p,q}\) of the point are then given by

$$\phi_{p,q} = \left( {\frac{\pi }{2} - \arccos \left( {\frac{z}{{\sqrt {x^{2} + y^{2} + z^{2} } }}} \right)} \right)\frac{180}{\pi }$$
$$\uplambda_{p,q} = \left( {\left( {Arg\left( {x + iy} \right) } \right)mod \left( {2\pi } \right)} \right)\frac{180}{\pi }$$

where \(mod\) is the modulus operator, \(Arg\) stands for complex argument and \(i\) is the imaginary unit. \(\phi_{p,q}\) and \(\uplambda_{p,q}\) are output in degrees, and lie in [−90, 90] and [0, 360) respectively. By iterating \(p\) and \(q\) from 1 to \(m\) and 1 to \(n\) respectively, the latitudes and longitudes of all radial grid points can be obtained.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yettella, V., Kay, J.E. How will precipitation change in extratropical cyclones as the planet warms? Insights from a large initial condition climate model ensemble. Clim Dyn 49, 1765–1781 (2017). https://doi.org/10.1007/s00382-016-3410-2

Download citation

Keywords

  • Extratropical cyclones
  • Precipitation
  • Storm tracks
  • Climate variability
  • Initial condition ensembles