The weakening of the ENSO–Indian Ocean Dipole (IOD) coupling strength in recent decades

Abstract

This study examines a recent weakening of the coupling between the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mode after the 2000s and 2010s compared to the previous two decades (1980s and 1990s). The correlation between the IOD during the September–November season and the Nino3.4 index during the December–February season is 0.21 for 1999–2014, while for the previous two decades (1979–1998) it is 0.64. It is found that this weakening of the ENSO–IOD coupling during the 2000s and 2010s is associated with different spatial patterns in ENSO evolution during the boreal spring and summer seasons. During the boreal spring season of the El Nino developing phase, positive precipitation anomalies over the northern off-equatorial western Pacific is systematically weakened during the 2000s and 2010s. This also weakens the low-level cross-equatorial southerly flow, which can cause local negative precipitation anomalies over the maritime continent through increased evaporation and cold and dry moist energy advection. The weakened negative precipitation anomalies over the maritime continent reduces the amplitude of the equatorial easterly over the IO, therefore, suppresses a ENSO-related IOD variability. An analysis using climate models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) supports this observational findings that the amplitude of the cross-equatorial southerly flow and associated suppressed convective activities over the maritime continent during the El Nino developing season are critical for determining the ENSO–IOD coupling strength in climate models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J.hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  2. Allan RJ et al (2001). Is there an Indian Ocean dipole and is it independent of the El Niño-Southern Oscillation?. International CLIVAR Project Office

  3. Ashok K, Saji NH (2007) On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Nat Hazards 42(2):273–285. doi:10.1007/s11069-006-9091-0

    Article  Google Scholar 

  4. Ashok K et al (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28(23):4499–4502

    Article  Google Scholar 

  5. Ashok K, Guan ZY, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon. J Clim 17:3141–3155

    Article  Google Scholar 

  6. Baquero-Bernal A et al (2002) On dipolelike variability of sea surface temperature in the tropical Indian Ocean. J Clim 15(11):1358–1368

    Article  Google Scholar 

  7. Behera SK, Yamagata T (2003) Influence of the Indian Ocean dipole on the Southern Oscillation. J Meteorol Soc Jpn 81(1):169–177

    Article  Google Scholar 

  8. Behera S et al (2000) Simulation of interannual SST variability in the tropical Indian Ocean. J.Clim 13(19):3487–3499

    Article  Google Scholar 

  9. Behera SK, Luo J-J, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1688–1705

    Article  Google Scholar 

  10. Cai W et al (2011) Interactions of ENSO, the IOD, and the SAM in CMIP3 models. J Clim 24(6):1688–1704

    Article  Google Scholar 

  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  12. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. R Meteorol Soc Q J 106:447–462

    Article  Google Scholar 

  13. Ham Y-G, Kug J-S (2012) How well do current climate models simulate two types of El Nino? Clim Dyn 39:383–398. doi:10.1007/s00382-011-1157-3

    Article  Google Scholar 

  14. Ham YG, Kug J-S (2015) Improvement of ENSO simulation based on intermodel diversity. J Clim 28:998–1015

    Article  Google Scholar 

  15. Ham Y-G, Kug J-S, Kang I-S (2007) Role of moist energy advection in formulating anomalous Walker Circulation associated with El Niño. J Geophys Res 112, D24105. doi:10.1029/2007JD008744

  16. Hong CC, Lu MM, Kanamitsu M (2008) Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J Geophys Res Atmos 113:D08107

    Google Scholar 

  17. Hong CC, Li T, Chen YC (2010) Asymmetry of the Indian Ocean basinwide SST anomalies: roles of ENSO and IOD. J Clim 23(13):3563–3576

    Article  Google Scholar 

  18. Hong S, Kang IS, Choi I, Ham YG (2013) Climate responses in the tropical Pacific associated with Atlantic warming in recent decades. Asia Pac J Atmos Sci 49(2):209–217

    Article  Google Scholar 

  19. Iizuka S et al (2000) The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys Res Lett 27(20):3369–3372

    Article  Google Scholar 

  20. Izumo T, Vialard J, Lengaigne M, de Boyer Monte´gut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the Indian Ocean Dipole on following year’s El Nino. Nat Geosci 3:168–172

    Article  Google Scholar 

  21. Izumo T, Lengaigne M, Vialard J, Luo JJ, Yamagata T, Madec G (2014) Influence of Indian Ocean Dipole and Pacific recharge on following year’s El Niño: interdecadal robustness. Clim Dyn 42(1–2):291–310

    Article  Google Scholar 

  22. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci 54(7):811–829

    Article  Google Scholar 

  23. Jourdain NC, Gupta AS, Taschetto AS, Ummenhofer CC, Moise AF, Ashok K (2013) The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim Dyn 41(11–12):3073–3102

    Article  Google Scholar 

  24. Kim D, Jang Y-S, Kim D-H, Kim Y-H, Watanabe M, Jin F-F, Kug J-S (2011) El Nino-Southern Oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J.Geophy Res 116:D22112. doi:10.1029/2011JD016526

    Google Scholar 

  25. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–407

    Article  Google Scholar 

  26. Kug J-S, Ham Y-G (2012) Indian Ocean feedback to the ENSO transition in a multi-model ensemble. J Clim 25:6942–6957. doi:10.1175/JCLI-D-12-00078.1

    Article  Google Scholar 

  27. Kug J-S, Kang I-S (2006) Interactive feedback between the Indian Ocean and ENSO. J Clim 19:1784–1801

    Article  Google Scholar 

  28. Kug J-S, Li T, An S-I, Kang I-S, Luo J-J, Masson S, Yamagata T (2006a) Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophy Res Lett 33:L09710. doi:10.1029/2005GL024916

    Article  Google Scholar 

  29. Kug J-S, Kirtman BP, Kang IS (2006b) Interactive Feedback between ENSO and the Indian Ocean in an interactive coupled model. J Clim 19(24):6371–6381

    Article  Google Scholar 

  30. Kug J-S, Sooraj KP, Li T, Jin F-F (2010) Precursors of El Nino/La Nina onset and thier interrelationship. J Geophy Res 115:D05106. doi:10.1029/2009JD012861

    Google Scholar 

  31. Kumar KK et al (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284(5423):2156–2159

    Article  Google Scholar 

  32. Kumar KK et al (2006) Unraveling the mystery of Indian monsoon failure during El Nino. Science 314(5796):115–119

    Article  Google Scholar 

  33. Lau N-C, Nath MJ (2004) Coupled GCM simulation of atmosphere-ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J Clim 17:245–265

    Article  Google Scholar 

  34. Li T, Zhang Y, Lu E, Wang D (2002) Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: an OGCM diagnosis. Geophys Res Lett 29:2110. doi:10.1029/2002GL05789

    Google Scholar 

  35. Li T, Wang B, Chang CP, Zhang Y (2003) A theory for the Indian ocean dipole-zonal mode*. J Atmos Sci 60(17):2119–2135

    Article  Google Scholar 

  36. Luo J-J, Zhang R, Behera S, Masumoto Y, Jin F-F, Lukas R, Yamagata T (2010) Interaction between El Nin˜o and extreme Indian Ocean dipole. J Clim 23:726–742

    Article  Google Scholar 

  37. Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci 109(46):18701–18706

    Article  Google Scholar 

  38. McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin FF, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4(10):888–892

    Article  Google Scholar 

  39. Meehl GA, Teng H, Arblaster JM (2014) Climate model simulations of the observed early-2000s hiatus of global warming. Nat Clim Change 4(10):898–902

    Article  Google Scholar 

  40. Rayner NA, Parkler DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperatures since the late nineteenth century. J Geophys Res. doi:10.1029/2002JD002670

    Google Scholar 

  41. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J.Clim 15:1609–1625

    Article  Google Scholar 

  42. Saji N et al (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363

    Google Scholar 

  43. Sooraj K et al (2009) Impact of El Niño onset timing on the Indian Ocean: pacific coupling and subsequent El Niño evolution. Theor appl climatol 97(1–2):17–27

    Article  Google Scholar 

  44. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17(12):2466–2477

    Article  Google Scholar 

  45. Ueda H, Matsumoto J (2000) A possible process of east-west asymmetric anomalies over the Indian Ocean in relation to 1997/98 El Niño. J Meteor Soc Japan 78:803–818

    Article  Google Scholar 

  46. Ummenhofer CC et al (2011) Multi-decadal modulation of the El Nino-Indian monsoon relationship by Indian Ocean variability. Environ Res Lett 6(3):034006

    Article  Google Scholar 

  47. Watanabe M, Kug J-S, Jin F-F, Collins M, Ohba M, Wittenburg A (2012) Uncertainty in the ENSO amplitude change from the past to the future. Geophys Res Lett 39:L20703. doi:10.1029/2012GL053305

    Article  Google Scholar 

  48. Webster PJ et al (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401(6751):356–360

    Article  Google Scholar 

  49. Weller E, Cai W (2013) Asymmetry in the IOD and ENSO teleconnection in a CMIP5 model ensemble and its relevance to regional rainfall. J Clim 26(14):5139–5149

    Article  Google Scholar 

  50. Yeh S-W et al (2009) El Niño in a changing climate. Nature 461(7263):511–514

    Article  Google Scholar 

  51. Yeh S-W, Kug J-S, An S-I (2014) Recent progress on two types of El Nino: observations, dynamics, and future changes. Asia Pac J 50:69–81. doi:10.1007/s13143-014-0028-3

    Google Scholar 

  52. Yuan Y, Li C (2008) Decadal variability of the IOD-ENSO relationship. Chinese Sci Bulletin 53(11):1745–1752

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2015R1C1A1A02036846). JSKI is supported by the Korea Meteorological Administration Research and Development Program under grant KMIPA 2015-1041.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Kug.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ham, YG., Choi, JY. & Kug, JS. The weakening of the ENSO–Indian Ocean Dipole (IOD) coupling strength in recent decades. Clim Dyn 49, 249–261 (2017). https://doi.org/10.1007/s00382-016-3339-5

Download citation

Keywords

  • ENSO
  • Indian Ocean Dipole
  • Decadal modulation