Skip to main content
Log in

Investigations of the middle atmospheric thermal structure and oscillations over sub-tropical regions in the Northern and Southern Hemispheres

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The temperature retrieved from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite during January 2002 to September 2015 are used in this study to delineate the differences of middle atmospheric thermal structure in the Northern Hemisphere (NH) and Southern Hemisphere (SH). Two stations namely Mt. Abu (24.59°N, 72.70°E) in NH and Reunion Island (21.11°S, 55.53°E) in SH are chosen over sub-tropical regions. Temperature climatology from SABER observations suggests that stratopause is warmer, and upper mesosphere is cooler in NH as compared to SH. Three atmospheric models are used to understand the monthly thermal structure differences for different altitudes. Moreover, semi-annual, annual and quasi-biennial oscillations are studied using Lomb Scargle Periodogram and Wavelet transform techniques. Over NH, summer and winter season are warmer (~4 K) and cooler (~3 K) respectively in stratosphere as compared to SH. It is important to note here that Mt. Abu temperature is warmer (~9 K) than Reunion Island in winter but in summer season Mt. Abu temperature is cooler in upper mesosphere and above mesosphere NH shows warming. Results show that annual oscillations are dominated in both hemisphere as compared to semi-annual and quasi-biennial oscillations. In upper mesosphere, strength of annual oscillations is substantial in NH, while semi-annual oscillations are stronger in SH. Wavelet analyses found that annual oscillations are significant in NH near mesopause, while semi-annual oscillations are strengthening in SH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander MJ, Rosenlof KH (1996) Nonstationary gravity wave forcing of the stratospheric zonal mean wind. J Geophys Res 101(D18):23465–23474

    Article  Google Scholar 

  • Andrews DG (1989) Some comparisons between the middle atmosphere dynamics of the southern and northern hemispheres. Pure Appl Geophys. 130:213–232

    Article  Google Scholar 

  • Argall PS, Sica RJ (2007) A comparison of Rayleigh and sodium lidar temperature climatologies. Ann Geophys 25:27–35

    Article  Google Scholar 

  • Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR et al (2001) The quasi-biennial oscillation. Rev Geophys 39(2):179–229

    Article  Google Scholar 

  • Barnett JJ, Corney M (1985) Middle atmosphere reference model derived from satellite data. In: International council of scientific unions middle atmosphere program. Handbook for MAP, Vol. 16 p 47–85 (SEE N86-12814 03-46)

  • Batista PP, Clemesha BR, Simonich DM (2008) Tidal associated temperature disturbances observed at the middle atmosphere (30–65 km) by a Rayleigh LIDAR at 23o. Adv Space Res 41(9):1408–1414

    Article  Google Scholar 

  • Batista PP, Clemesha BR, Simonich DM (2009) A 14-year monthly climatology and trend in the 35–65 km altitude range from Rayleigh LIDAR temperature measurements at a low latitude station. J Atmos Sol–Terr Phys 71:1456–1462

    Article  Google Scholar 

  • Becker E, Müllemann A, Lübken FJ, Körnich H, Hoffmann P, Rapp M (2004) High Rossby‐wave activity in austral winter 2002: Modulation of the general circulation of the MLT during the MaCWAVE/MIDAS northern summer program. Geophys Res Lett, 31(24

  • Bencherif H, Morel B, Moorgawa A, Michaelis M, Leveau J, Porteneuve J, Hauchecorne A, Faduilhe D (2000) Observation and first validation of stratospheric temperature profiles obtained by a Rayleigh-Mie LIDAR over Durban, South Africa. S Afr J Sci 96:487–492

    Google Scholar 

  • Chandra H, Sharma Som, Acharya YB, Jayaraman A (2005) Rayleigh Lidar studies of thermal structure over Mt Abu. J Indian Geophys Un 9:279–298

    Google Scholar 

  • Chanin, M.L., Hauchecorne, A., Smires, N., 1985. Contribution to the CIRA model from ground based lidar. MAP Handbook, vol. 16, pp. 305–314

  • Clancy RT, Rusch DW, Callan MT (1994) Temperature minima in the average thermal structure of the middle atmosphere (70–80 km) from analysis of 40- to 92-km SME global temperature profiles. J Geophys Res 99:19001–19020

    Article  Google Scholar 

  • Cooper M (2004) Validation of SABER temperature measurements using ground-based instruments. In: Proceedings of the IEEE international geoscience and remote sensing symposium, pp. 4099–4101

  • Croll J (1870) V.—The Boulder-clay of Caithness a Product of Land-ice. Geol Mag 7(71):209–214

    Article  Google Scholar 

  • Das U, Sinha HSS (2008) Long‐term variations in oxygen green line emission over Kiso, Japan, from ground photometric observations using continuous wavelet transform. J Geophys Res Atmos, 113(D19)

  • Dou X, Tao L, Xu J, Liu H-L, Xue X, Wang S, Leblanc T, McDermid S, Hauchecorne A, Keeckhut P, Bencherif H, Heinselman C, Steinbrecht W, Mlynczak MG, Russell JM III (2009) Seasonal oscillations of middle atmosphere temperature observed by Rayleigh LIDARs and their comparisons with TIMED/SABER observations. J Geophys Res 114:D20103. doi:10.1029/2008JD011654

    Article  Google Scholar 

  • Farge M (1992) Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech 24(1):395–458

    Article  Google Scholar 

  • Forbes JM, Zhang X, Ward W, Talaat ER (2002) Climatological features of mesosphere and lower thermosphere stationary planetary waves within ± 40 latitude. J Geophys Res 107(D17):4322. doi:10.1029/2001JD001232

    Article  Google Scholar 

  • Fritts DC (1990) Gravity waves in the middle atmosphere of the southern hemisphere. In Dynamics, transport and photochemistry in the middle atmosphere of the southern hemisphere (pp. 171–189). Springer Netherlands

  • Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1)

  • Fritts DC, Vanzandt TE (1993) Spectral estimates of gravity wave energy and momentum fluxes. Part I: energy dissipation, acceleration, and constraints. J Atmos Sci 50(22):3685–3694

    Article  Google Scholar 

  • Garcia RR, Dunkerton TJ, Lieberman RS, Vincent RA (1997) Climatology of the semiannual oscillation of the tropical middle atmosphere. J Geophys Res Atmos 102(D22):26019–26032

    Article  Google Scholar 

  • Gardner CS, Papen GC, Chu X, Pan W (2001) First Lidar observations of middle atmosphere temperatures, Fe densities, and polar mesospheric clouds over the North and South Poles. Geophys Res Lett 28:1199–1202

    Article  Google Scholar 

  • Gerding M, H€offner J, Lautenbach J, Rauthe M, L€ubken F-J (2008) Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 541 N observed by lidar. Atmos Chem Phys 8:7465–7482. doi:10.5194/acp-8-7465-2008

    Article  Google Scholar 

  • Giorgetta MA, Manzini E, Roeckner E (2002) Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys Res Lett 29(8):1245. doi:10.1029/2002GL014756

    Article  Google Scholar 

  • Gobbi GP, Souprayen C, Congeduti F, Di Donfrancesco G, Adriani A, Viterbini M, Centurioni S (1995) Lidar observations of middle atmosphere temperature variability. In Annales Geophysicae (Vol. 13, No. 6, pp. 648–655). Springer-Verlag

  • Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch et al. (2010). Solar influences on climate. Rev Geophys 48(4)

  • Gross MR, McGee TJ, Ferrare RA, Singh U, Kimvilikani P (1997) Temperature measurements made with a combined Rayleigh–Mie/Raman Lidar. Appl Opt 24:5987–5995

    Article  Google Scholar 

  • Hartmann DL, Mechoso CR, Yimazaki K (1984) Observations of wave-mean flow interaction in the Southern Hemisphere. J Atmos Sci 41:351–362

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML, Keckhut P (1991) Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France. J Geophys Res Atmos 96(D8):15297–15309

    Article  Google Scholar 

  • Hauchecorne A, Chanin ML, Keckhut P, Nedeljkovic D (1992) Lidar monitoring of the temperature in the middle and lower atmosphere. Appl Phys B 54:2573–2579

    Google Scholar 

  • Hirota I, Hirooka T, Shiotani M (1983) Upper stratospheric circulations in the two hemispheres observed by satellites. Q J R Meteorol Soc 109:443–453

    Article  Google Scholar 

  • Jenkins DB, Wareing DP, Thomas L, Vaughan G (1987) Upper stratospheric and mesospheric temperatures derived from lidar observations at Aberystwyth. J Atmos Terr Phys 49:287–298

    Article  Google Scholar 

  • Kang SM, Seager R, Frierson DM, Liu X (2013) Croll revisited: why is the northern hemisphere warmer than the southern hemisphere? Clim Dyn 44(5–6):1457–1472

    Google Scholar 

  • Karlsson B, McLandress C, Shepherd TG (2009) Inter-hemispheric mesospheric coupling in a comprehensive middle atmosphere model. J Atmos Solar Terr Phys 71(3):518–530

    Article  Google Scholar 

  • Kishore Kumar G, Venkat Ratnam M, Patra AK, Vijaya Bhaskara Rao S, Russell J (2008) Mean thermal structure of the low-latitude middle atmosphere studied using Gadanki Rayleigh lidar, Rocket, and SABER/TIMED observations. J Geophys Res 113:D23106. doi:10.1029/2008JD010511

    Article  Google Scholar 

  • Kornich H, Becker E (2010) A simple model for the interhemispheric coupling of the middle atmosphere circulation. Adv Space Res 45(5):661–668

    Article  Google Scholar 

  • Lal S, Subbaraya BH, Narayanan V (1979) Equatorial stratospheric and meso-spheric structural variations during the years 1971–74, 1979. Sp Res 19:147–157

    Google Scholar 

  • Leblanc T, McDermid IS, Keckhut P, Hauchecorne A, She C, Krueger DA (1998) Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes. J Geophys Res 103:17191–17204

    Article  Google Scholar 

  • Li T, Leblanc T, McDermid IS (2008) Interannual variations of middle atmospheric temperature as measured by the JPL lidar at Mauna Loa Observatory, Hawaii (19.51 N, 155.61 W). J Geophys Res 113:D14109. doi:10.1029/2007JD009764

    Article  Google Scholar 

  • Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39(2):447–462

    Article  Google Scholar 

  • Matthes K, Kodera K, Garcia RR, Kuroda Y, Marsh DR, Labitzke K (2013) The importance of time-varying forcing for QBO modulation of the atmospheric 11 year solar cycle signal. J Geophys Res Atmos 118(10):4435–4447

    Article  Google Scholar 

  • Mechoso CR, Hartmann DL, Farrara JD (1985) Climatology and interannual variability of wave, mean-flow interaction in the Southern Hemisphere. J Atmos Sci 42(20):2189–2206

    Article  Google Scholar 

  • Mertens CJ, Mlynczak MG, Lopez-Puertas M, Wintersteiner PP, Picard RH, Winick JR, Gordley LL, Russell JM III (2001) Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-mm Earth limb emission under non-LTE conditions. Geophys Res Lett 28(1391–1394):2000G. doi:10.1029/L012189

    Google Scholar 

  • Mertens CJ, Russell JM III, Mlynczak MG, She CY, Schmidlin FJ, Goldberg RA et al (2009) Kinetic temperature and carbon dioxide from broadband infrared limb emission measurements taken from the TIMED/SABER instrument. Adv Space Res 43(1):15–27

    Article  Google Scholar 

  • Mohankumar K (1994) Temperature variability over the tropical middle atmosphere. Ann Geophys 12:448–496

    Article  Google Scholar 

  • Morel B, Bencherif H, Keckhut P, Baldy S, Hauchecorne A (2002) Evidence of tidal perturbations in the middle atmosphere over Southern Tropics as deduced from LIDAR data analysis. J Atmos Solar Terr Phys 64:1979–1988

    Article  Google Scholar 

  • Namboothiri SP, Sugimoto N, Nakane H, Matsui I, Murayama Y (1999) Rayleigh lidar observations of temperature over Tsukuba, winter thermal structure and comparison studies. Earth, Planets Sp 51:825–832

    Article  Google Scholar 

  • Nee JB, Thulasiramana S, Chen WN, Venkat Ratnam M, Narayana Rao D (2002) Middle atmospheric temperature structure over two tropical locations, Chung–Li (251 N, 1211E) and Gadanki (13.51 N,79.21E). J Atmos Solar Terr Phys 64:1311–1319

    Article  Google Scholar 

  • Parameswaran K, Sasi MN, Ramkumar G, Nair PR, Deepaa V, Krishnamurthy BV, Prabhakaran Nayar SR, Revathy K, Mrudula G, Satheesan K, Bhavanikumar Y, Sivakumar V, Raghunath K, Rajendraprasad T, Krishnaiah M (2000) Altitude profiles of temperature from 4–80 km over the tropics from MST radar and lidar. J Atmos Sol–Terr Phys 62:1327–1337

    Article  Google Scholar 

  • Philander SGH, Gu D, Lambert G, Li T, Halpern D, Lau NC, Pacanowski RC (1996) Why the ITCZ is mostly north of the equator. J Clim 9(12):2958–2972

    Article  Google Scholar 

  • Pulido M, Thuburn J (2008) The seasonal cycle of gravity wave drag in the middle atmosphere. J Clim 21:4664–4679

    Article  Google Scholar 

  • Randel W, Udelhofen P, Fleming E, Geller M, Gelman M, Hamilton K, Karoly Ortland D, Pawson S, Swinbank R, Wu F, Baldwin M, Chanin ML, Keckhut P, Labitzke K, Remsberg E, Simmons A, Wu D (2004) The SPARC intercomparison of middle atmospheric climatologies. J Clim 17:986–1003

    Article  Google Scholar 

  • Remsberg EE, Bhatt PB, Deaver LE (2002) An assessment of the Quality of HALOE temperature profiles in the mesosphere with Rayleigh Backscatter Lidar and inflatable falling sphere measurements. J Geophys Res 107(D19):4411. doi:10.1029/2001JD001366

    Article  Google Scholar 

  • Remsberg EE, Marshall BT, Garcia‐Comas M, Krueger D, Lingenfelser GS, Martin‐Torres et al. (2008). Assessment of the quality of the Version 1.07 temperature‐versus‐pressure profiles of the middle atmosphere from TIMED/SABER. J Geophys Res Atmos, 113(D17)

  • Sasi MN (1994) A reference atmosphere for the Indian equatorial zone. Indian J Radio Space Phys 23:299–312

    Google Scholar 

  • Sasi MN, Sengupta K (1979) A model equatorial atmosphere over the Indian zone from 0 to 80 km. Scientific Report ISRO-VSSC-SR-19

  • Sato K, Watanabe S, Kawatani Y, Tomikawa Y, Miyazaki K, Takahashi M (2009) On the origins of mesospheric gravity waves. Geophys Res Lett 36:L19801. doi:10.1029/2009GL039908

    Article  Google Scholar 

  • Sato K, Tateno S, Watanabe S, Kawatani Y (2012) Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J Atmos Sci 69(4):1378–1396

    Article  Google Scholar 

  • Scargle JD (1982) Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853

    Article  Google Scholar 

  • Sharma S, Sivakumar V, Bencherief H, Chandra H, Rao PB, Rao DN (2006) A comprehensive study on middle atmospheric thermal structure over a low and near mid-latitude stations. Adv Sp Res 37:2278–2283

    Article  Google Scholar 

  • Sharma S, Sridharan S, Chandra H, Lal S, Acharya YB (2012) Middle atmospheric thermal structure over sub-tropical and tropical Indian locations using Rayleigh lidar. Planet Sp Sci 63:36–48

    Article  Google Scholar 

  • Sharma S, Chandra H, Lal S, Acharya YB, Jayaraman A, Gadhavi H, Sridharan S, Chandra S (2015) Study of thermal structure differences from coordinated lidar observations over Mt. Abu (24.5° N, 72.7° E) and Gadanki (13.5° N, 79.2° E). Earth, Planets Sp 67(1):1–11

    Article  Google Scholar 

  • Shiotani M, Hirota I (1985) Planetary wave-mean flow interaction in the stratosphere: a comparison between Northern and Southern Hemispheres. Q J R Meteorol Soc 111:309–334

    Article  Google Scholar 

  • Sica RJ, Izawa MRM, Walker KA, Boone C, Petelina SV, Argall PS, Bernath P, Burns GB, Catoire V, Collins RL, Daffer WH, Clercq C De, Fan ZY, Firanski BJ, French WJR, Gerard P, Gerding M, Granville J, Innis JL, Keckhut P, Kerzenmacher T, Klekociuk AR, Kyro E, Lambert JC, Llewellyn Manney GL, McDermid IS, Mizutani K, Murayama Y, Piccolo C, Raspollini P, Ridolfi M, Robert C, Steinbrecht W, Strawbridge KB, Strong K, Stubi R, Thurairajah B (2008) Validation of the atmospheric chemistry experiment (ACE) Version 2.2 temperature using ground-based and space-borne measurements. Atmos Chem Phys 8:35–62

    Article  Google Scholar 

  • Sivakumar V, Rao PB, Krishnaiah M (2003) Lidar measurements of stratosphere–mesosphere thermal structure at a low latitude: comparison with satellite data and models. J Geophys Res 108(D11):4342. doi:10.1029/2002JD003029

    Article  Google Scholar 

  • Sivakumar V, Prasanth PV, Kishore P, Bencherif H, Keckhut P (2011) Rayleigh Lidar and Satelite (HALOE, SABER, CHAMP and COSMIC) measurements of stratopshere–mesosphere temperature over southern sub-tropical site, Reunion (20.81S, 55.51E): climatology and comparison study. Ann Geo Phys 29:649–662

    Google Scholar 

  • Whiteway JA, Carswell AI (1994) Rayleigh lidar observations of thermal structure and gravity wave activity in the high arctic during a stratospheric warming. J Atmos Sci 51:3122–3136

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to SABER onboard TIMED, CIRA-86, MSISE-90 and NRLMSIS-00 team members to provide valuable temperature data. This work is supported by Dept. of Space, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Som Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kumar, P., Jethva, C. et al. Investigations of the middle atmospheric thermal structure and oscillations over sub-tropical regions in the Northern and Southern Hemispheres. Clim Dyn 48, 3671–3684 (2017). https://doi.org/10.1007/s00382-016-3293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3293-2

Keywords

Navigation