Skip to main content

Sub-decadal North Atlantic Oscillation variability in observations and the Kiel Climate Model

Abstract

The North Atlantic Oscillation (NAO) is the dominant mode of winter climate variability in the North Atlantic sector. The corresponding index varies on a wide range of timescales, from days and months to decades and beyond. Sub-decadal NAO variability has been well documented, but the underlying mechanism is still under discussion. Other indices of North Atlantic sector climate variability such as indices of sea surface and surface air temperature or Arctic sea ice extent also exhibit pronounced sub-decadal variability. Here, we use sea surface temperature and sea level pressure observations, and the Kiel Climate Model to investigate the dynamics of the sub-decadal NAO variability. The sub-decadal NAO variability is suggested to originate from dynamical large-scale air-sea interactions. The adjustment of the Atlantic Meridional Overturning Circulation to previous surface heat flux variability provides the memory of the coupled mode. The results stress the role of coupled feedbacks in generating sub-decadal North Atlantic sector climate variability, which is important to multiyear climate predictability in that region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Álvarez-García F, Latif M, Biastoch A (2008) On multidecadal and quasi-decadal North Atlantic variability. J Clim 21:3433–3452. doi:10.1175/2007JCLI1800.1

    Article  Google Scholar 

  2. Bjerknes J (1964) Atlantic air–sea interaction. Adv Geophys 10:1–82

    Article  Google Scholar 

  3. Bryden HL, King BA, McCarthy GD, McDonagh EL (2014) Impact of a 30 % reduction in Atlantic Meridional Overturning during 2009–2010. Ocean Sci 10:683–691. doi:10.5194/os-10-683-2014

    Article  Google Scholar 

  4. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881. doi:10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2

    Article  Google Scholar 

  5. Cunningham SA, Roberts CD, Frajka-Williams E, Johns WE, Hobbs W, Palmer MD, Rayner D, Smeed DA, McCarthy G (2013) Atlantic Meridional Overturning circulation slowdown cooled the subtropical ocean. Geophys Res Lett 40:6202–6207. doi:10.1002/2013GL058464

    Article  Google Scholar 

  6. Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26:2969–2972. doi:10.1029/1999GL900613

    Article  Google Scholar 

  7. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623. doi:10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2

    Article  Google Scholar 

  8. Czaja A, Marshall J (2001) Observations of atmosphere-ocean coupling in the North Atlantic. Q J R Meteorol Soc 127:1893–1916. doi:10.1256/smsqj.57602

    Article  Google Scholar 

  9. Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic ocean during winter: 1900–1989. J Clim 6:1743–1753. doi:10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2

    Article  Google Scholar 

  10. Drews A, Greatbatch RJ, Ding H, Latif M, Park W (2015) The use of a flow field correction technique for alleviating the North Atlantic cold bias with application to the Kiel Climate Model. Ocean Dyn 65:1079–1093. doi:10.1007/s10236-015-0853-7

    Article  Google Scholar 

  11. Eden C, Greatbatch RJ (2003) A damped decadal oscillation in the North Atlantic Climate System. J Clim 16:4043–4060. doi:10.1175/1520-0442(2003)016<4043:ADDOIT>2.0.CO;2

    Article  Google Scholar 

  12. Frankignoul C, Gastineau G, Kwon Y (2015) Wintertime atmospheric response to North Atlantic ocean circulation variability in a climate model. J Clim. doi:10.1175/JCLI-D-15-0007.1

    Google Scholar 

  13. Fye FK, Stahle DW, Cook ER, Cleaveland MK (2006) NAO influence on sub-decadal moisture variability over central North America. Geophys Res Lett 33:L15707. doi:10.1029/2006GL026656

    Article  Google Scholar 

  14. Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP (2013) North Atlantic ocean control on surface heat flux on multidecadal timescales. Nature 499:464–467. doi:10.1038/nature12268

    Article  Google Scholar 

  15. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679. doi:10.1126/science.269.5224.676

    Article  Google Scholar 

  16. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. American Geophysical Union, Washington. doi:10.1029/134GM01

    Chapter  Google Scholar 

  17. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  18. Leith CE (1973) The standard error of time-average estimates of climatic means. J Appl Meteorol 12(6):1066–1068. doi:10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2

    Article  Google Scholar 

  19. Marshall J, Johnson H, Goodman J (2001) Study of the interaction of the North Atlantic Oscillation with ocean circulation. J Clim 14:1399–1421. doi:10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2

    Article  Google Scholar 

  20. Park W, Latif M (2005) Ocean Dynamics and the Nature of Air-Sea Interactions over the North Atlantic at Decadal Time Scales. J Clim 18:982–995. doi:10.1175/JCLI-3307.1

    Article  Google Scholar 

  21. Park W, Latif M (2008) Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett 35:L22703. doi:10.1029/2008GL035779

    Article  Google Scholar 

  22. Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J Clim 22:71–92. doi:10.1175/2008JCLI2261.1

    Article  Google Scholar 

  23. Saravanan R, McWilliams JC (1997) Stochasticity and spatial resonance in interdecadal climate fluctuations. J Clim 10:2299–2320. doi:10.1175/1520-0442(1997)010<2299:SASRII>2.0.CO;2

    Article  Google Scholar 

  24. Saravanan R, McWilliams JC (1998) Advective ocean–atmosphere interaction: an analytical stochastic model with implications for decadal variability. J Clim 11:165–188. doi:10.1175/1520-0442(1998)011<0165:AOAIAA>2.0.CO;2

    Article  Google Scholar 

  25. Smeed D, McCarthy G., Rayner D., Moat BI, Johns WE, Baringer MO, Meinen CS (2015) Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26 N from 2004 to 2014. British Oceanographic Data Centre—Natural Environment Research Council, UK

  26. Sutton RT, Allen MR (1997) Decadal predictability of North Atlantic sea surface temperature and climate. Nature 388:563–567. doi:10.1038/41523

    Article  Google Scholar 

  27. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys D 35:395–424. doi:10.1016/0167-2789(89)90077-8

    Article  Google Scholar 

  28. Visbeck M, Hurrel JW, Polvani L, Cullen HM (2001) The North Atlantic Oscillation: past, present, and future. Proc Natl Acad Sci USA 98:12876–12877. doi:10.1073/pnas.231391598

    Article  Google Scholar 

  29. Woollings T, Gregory JM, Pinto JG, Reyers M, Brayshaw DJ (2015) Contrasting interannual and multidecadal NAO variability. Clim Dyn 45:539–556. doi:10.1007/s00382-014-2237-y

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German BMBF-sponsored RACE and RACE II projects (Grant Agreement no. 03F0651B and 03F0729C respectively) and the EU FP7 NACLIM project (Grant Agreement no. 308299). The climate model integrations were performed at the Computing Centre of Kiel University. Data from the RAPID-WATCH MOC monitoring project are funded by the Natural Environment Research Council and are freely available from http://www.rapid.ac.uk/rapidmoc/.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Annika Reintges.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 646 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reintges, A., Latif, M. & Park, W. Sub-decadal North Atlantic Oscillation variability in observations and the Kiel Climate Model. Clim Dyn 48, 3475–3487 (2017). https://doi.org/10.1007/s00382-016-3279-0

Download citation

Keywords

  • North Atlantic climate variability
  • North Atlantic Oscillation (NAO)
  • Sub-decadal variability
  • Atmosphere–ocean interaction
  • Atlantic Meridional Overturning Circulation (AMOC)