Skip to main content

Advertisement

Log in

Climatic anomalous patterns associated with the Arctic and Polar cell strength variations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Arctic cell as a reversed and closed loop next to the Polar cell has been recently revealed in the Northern Hemisphere (NH). In this paper, we study the interannual variability of the Arctic and Polar cell strengths during 1979–2012, and their influence on surface air temperature (SAT), precipitation, and sea-ice concentration (SIC) at mid- and high-latitudes of the NH. We show that there is a significant negative correlation between the Arctic and Polar cell strengths. Both the Arctic and Polar cell strengths can well indicate the recurring climatic anomalies of SAT, precipitation, and SIC in their extreme winters. The surface large-scale cold–warm and dry–wet anomalous patterns in these extreme winters are directly linked with the vertical structure of height and temperature anomalies in the troposphere. Results suggest that the past climatic anomalies are better indicated by the strength anomalies of the Polar and Arctic cells than the traditional indices of mid-high latitude pattern such as the Arctic Oscillation and North Atlantic Oscillation. This study illustrates a three-dimensional picture of atmospheric variable anomalies in the troposphere that result in surface climatic anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126. doi:10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2

    Article  Google Scholar 

  • Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res Atmos 112(D10):185–194. doi:10.1029/2006JD007859

    Article  Google Scholar 

  • Bromwich DH, Kuo Y-H, Serreze M, Walsh J, Bai L-S, Barlage M, Hines K, Slater A (2010) Arctic system reanalysis: call for community involvement. EOS Trans Am Geophys Union 91(2):13–14

    Article  Google Scholar 

  • Bromwich DH, Wilson AB, Bai LS, Moore GW, Bauer P (2015) A comparison of the regional Arctic system reanalysis and the global ERA-Interim reanalysis for the Arctic. Q J R Meteorol Soc. doi:10.1002/qj.2527

    Google Scholar 

  • Chen JY, Carlson BE, Del Genio AD (2002) Evidence for strengthening of the tropical general circulation in the 1990s. Science 295:838–841. doi:10.1126/science.1065835

    Article  Google Scholar 

  • Chen S, Wei K, Chen W, Song L (2014) Regional changes in the annual mean Hadley circulation in recent decades. J Geophys Res Atmos 119(13):7815–7832. doi:10.1002/2014JD021540

    Article  Google Scholar 

  • Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637

    Article  Google Scholar 

  • Davis SM, Rosenlof KH (2012) A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J Clim 25:1061–1078. doi:10.1175/JCLI-D-11-00127.1

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Deser C, Teng H (2008) Recent trends in Arctic sea ice and the evolving role of atmospheric circulation forcing, 1979–2007. Arct Sea Ice Decline Obs Proj Mech Implic. doi:10.1029/180GM03

    Google Scholar 

  • Devasthale A, Sedlar J, Koenigk T, Fetzer EJ (2013) The thermodynamic state of the Arctic atmosphere observed by AIRS: comparisons during the record minimum sea ice extents of 2007 and 2012. Atmos Chem Phys 13(15):7441–7450. doi:10.5194/acp-13-7441-2013

    Article  Google Scholar 

  • Ding T, Qian WH (2012) Statistical characteristics of heat wave precursors in China and model prediction. Chin J Geophys 5:1472–1486. doi:10.6038/j.issn.0001-5733.2012.05.005 (in Chinese)

    Google Scholar 

  • Dong XQ, Zib BJ, Xi B et al (2014) Critical mechanisms for the formation of extreme arctic sea-ice extent in the summers of 2007 and 1996. Clim Dyn 43(1–2):53–70. doi:10.1007/s00382-013-1920-8

    Article  Google Scholar 

  • Ebita A, Kobayashi S, Ota Y et al (2011) The Japanese 55-year reanalysis “JRA-55”: an interim report. J Meteorol Soc Jpn 7:149–152. doi:10.2151/sola.2011-038

    Google Scholar 

  • Frierson DM, Lu J, Chen G (2007) Width of the Hadley cell in simple and comprehensive general circulation models. Geophys Res Lett 34:L18804. doi:10.1029/2007GL031115

    Article  Google Scholar 

  • Fu Q, Johanson CM, Wallace JM, Reichler T (2006) Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312:1179. doi:10.1126/science.1125566

    Article  Google Scholar 

  • Graversen RG, Mauritsen T, Drijfhout S, Tjernström M, Mårtensson S (2011) Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Clim Dyn 36(11–12):2103–2112. doi:10.1007/s00382-010-0809-z

    Article  Google Scholar 

  • Hu YY, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys 7:5229–5236. doi:10.5194/acp-7-5229-2007

    Article  Google Scholar 

  • Hu YY, Tung KK, Liu J (2005) A closer comparison of early and late-winter atmospheric trends in the Northern-Hemisphere. J Clim 18:3204–3216. doi:10.1175/JCLI3468.1

    Article  Google Scholar 

  • Johanson CM, Fu Q (2009) Hadley cell widening: model simulations versus observations. J Clim 22(10):2713–2725. doi:10.1175/2008JCLI2620.1

    Article  Google Scholar 

  • Kahl JD, Serreze MC, Schnell RC (1991) The historical Arctic rawinsonde archive. In: Fergusson EE, Rosson RM (eds) Climate Monitoring and Diagnostics Laboratory No. 19 Summary report 1990. National Oceanic and Atmospheric Administration, Boulder, pp 95–98

    Google Scholar 

  • Kahl JD, Skony SM, Serreze MC, Shiotani S, Schnell RC (1992) In situ meteorological sounding archives for Arctic studies. Bull Am Meteorol Soc 73:1824–1830

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631

    Article  Google Scholar 

  • Kumar A, Perlwitz J, Eischeid J et al (2010) Contribution of sea ice loss to Arctic amplification. Geophys Res Lett 37(21):L21701. doi:10.1029/2010GL045022

    Article  Google Scholar 

  • Lindzen RS, Hou AY (1988) Hadley circulations for zonally averaged heating centered off the equator. J Atmos Sci 45(17):2416–2427. doi:10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34(6):L06805. doi:10.1029/2006GL028443

    Article  Google Scholar 

  • Mitas CM, Clement A (2005) Has the Hadley cell been strengthening in recent decades? Geophys Res Lett 32(3):L03809. doi:10.1029/2004GL021765

    Article  Google Scholar 

  • Qian WH, Jiang M (2014) Early signals of synoptic-scale atmospheric anomalies associated with the summer low temperature events in Northeast China. Meteorol Atmos Phys 124(1–2):33–46. doi:10.1007/s00703-013-0306-0

    Article  Google Scholar 

  • Qian WH, Zhang ZJ (2012) Precursors to predict low-temperature freezing-rain events in southern China. Chin J Geophys 5:1501–1512. doi:10.6038/j.issn.0001-5733.2012.05.007 (in Chinese)

    Google Scholar 

  • Qian WH, Chen Y, Jing M, Hu Q (2015a) An anomaly-based method for identifying signals of spring and autumn low temperature events in the Yangtze River Valley, China. J Appl Meteorol Climatol 54:1216–1233. doi:10.1175/JAMC-D-14-0240.1

    Article  Google Scholar 

  • Qian WH, Wu KJ, Chen DL (2015b) The Arctic and Polar cells act on the Arctic sea ice variation. Tellus A 67:27692

    Article  Google Scholar 

  • Qian WH, Wu KJ, Liang HY (2015c) Arctic and Antarctic cells in the troposphere. Theor Appl Climatol. doi:10.1007/s00704-015-1485-z

    Google Scholar 

  • Qian WH, Yu TT, Du J (2015d) A unified approach to trace surface heat and cold events by using height anomaly. Clim Dyn. doi:10.1007/s00382-015-2666-2

    Google Scholar 

  • Qian WH, Wu KJ, Leung JC-H (2016) Three-dimensional structure and long-term trend of heat wave events in western Eurasia revealed with an anomaly-based approach. Int J Climatol. doi:10.1002/joc.4634

    Google Scholar 

  • Quan X, Diaz HF, Hoerling MP (2002) Changes of the Hadley circulation since 1950. In: The conference on the Hadley circulation: present, past and future, 12–15 Nov. Honolulu, Hawaii

  • Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):1–29. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Screen JA, Deser C, Simmonds I (2012) Local and remote controls on observed Arctic warming. Geophys Res Lett 39:L10709. doi:10.1029/2012GL051598

    Article  Google Scholar 

  • Stachnik JP, Schumacher C (2011) A comparison of the Hadley circulation in modern reanalyses. J Geophys Res 116:D22. doi:10.1029/2011jd016677

    Article  Google Scholar 

  • Wielicki BA, Wong T, Allan RP, Slingo A, Kiehl JT, Soden BJ, Gordon CT, Miller AJ, Yang SK, Randall DA, Robertson F, Susskind J, Jacobowitz H (2002) Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295:841–843. doi:10.1126/science.1065837

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:539–2558. doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

We thank the editor and two anonymous reviewers for their detail and constructive suggestions, which greatly improved our manuscript. This work is supported by the National Natural Science Foundation of China (41375073), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05090407) and the Global Change and Air-Sea Interaction Program (GASI-03-02-01-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, W., Wu, K. & Leung, J.CH. Climatic anomalous patterns associated with the Arctic and Polar cell strength variations. Clim Dyn 48, 169–189 (2017). https://doi.org/10.1007/s00382-016-3067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3067-x

Keywords

Navigation