Climate Dynamics

, Volume 49, Issue 3, pp 1107–1136 | Cite as

Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project

  • Matthieu Chevallier
  • Gregory C. Smith
  • Frédéric Dupont
  • Jean-François Lemieux
  • Gael Forget
  • Yosuke Fujii
  • Fabrice Hernandez
  • Rym Msadek
  • K. Andrew Peterson
  • Andrea Storto
  • Takahiro Toyoda
  • Maria Valdivieso
  • Guillaume Vernieres
  • Hao Zuo
  • Magdalena Balmaseda
  • You-Soon Chang
  • Nicolas Ferry
  • Gilles Garric
  • Keith Haines
  • Sarah Keeley
  • Robin M. Kovach
  • Tsurane Kuragano
  • Simona Masina
  • Yongming Tang
  • Hiroyuki Tsujino
  • Xiaochun Wang
Article

Abstract

Ocean–sea ice reanalyses are crucial for assessing the variability and recent trends in the Arctic sea ice cover. This is especially true for sea ice volume, as long-term and large scale sea ice thickness observations are inexistent. Results from the Ocean ReAnalyses Intercomparison Project (ORA-IP) are presented, with a focus on Arctic sea ice fields reconstructed by state-of-the-art global ocean reanalyses. Differences between the various reanalyses are explored in terms of the effects of data assimilation, model physics and atmospheric forcing on properties of the sea ice cover, including concentration, thickness, velocity and snow. Amongst the 14 reanalyses studied here, 9 assimilate sea ice concentration, and none assimilate sea ice thickness data. The comparison reveals an overall agreement in the reconstructed concentration fields, mainly because of the constraints in surface temperature imposed by direct assimilation of ocean observations, prescribed or assimilated atmospheric forcing and assimilation of sea ice concentration. However, some spread still exists amongst the reanalyses, due to a variety of factors. In particular, a large spread in sea ice thickness is found within the ensemble of reanalyses, partially caused by the biases inherited from their sea ice model components. Biases are also affected by the assimilation of sea ice concentration and the treatment of sea ice thickness in the data assimilation process. An important outcome of this study is that the spatial distribution of ice volume varies widely between products, with no reanalysis standing out as clearly superior as compared to altimetry estimates. The ice thickness from systems without assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. An evaluation of the sea ice velocity fields reveals that ice drifts too fast in most systems. As an ensemble, the ORA-IP reanalyses capture trends in Arctic sea ice area and extent relatively well. However, the ensemble can not be used to get a robust estimate of recent trends in the Arctic sea ice volume. Biases in the reanalyses certainly impact the simulated air–sea fluxes in the polar regions, and questions the suitability of current sea ice reanalyses to initialize seasonal forecasts.

Keywords

Ice–ocean reanalysis Model intercomparison Arctic Sea ice Data assimilation Ice thickness 

References

  1. Andersen S, Breivik LA, Eastwood S, Godøy Ø, Lind M, Porcires M, Schyberg H (2007) OSI SAF sea ice product manual—v3. 5. EUMETSAT OSI SAF—ocean and sea ice satellite application facility. Tech. Rep. SAF/OSI/met. no/TEC/MA/125 Google Scholar
  2. Anisimov OA, Vaughan DG, Callaghan TV, Furgal C, Marchant H, Prowse TD, Vilhjàlmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic). Clim Change 15:653–685Google Scholar
  3. Balmaseda M, Mogensen K, Molteni F, Weaver A (2010) The NEMOVAR-COMBINE ocean re-analysis (No. 1, p. 10). COMBINE technical reportGoogle Scholar
  4. Balmaseda MA, Hernandez F, Storto A, Palmer MD, Alves O, Shi L, Smith GC, Toyoda T, Valdivieso M, Barnier B, Behringer D, Boyer T, Chang Y-S, Chepurin GA, Ferry N, Forget G, Fujii Y, Good S, Guinehut S, Haines K, Ishikawa Y, Keeley S, Köhl A, Lee T, Martin M, Masina S, Masuda S, Meyssignac B, Mogensen K, Parent L, Peterson KA, Tang YM, Yin Y, Vernieres G, Wang X, Waters J, Wedd R, Wang O, Xue Y, Chevallier M, Lemieux J-F, Dupont F, Kuragano T, Kamachi M, Awaji T, Caltabiano A, Wilmer-Becker K, Gaillard F (2015) The Ocean Reanalyses Intercomparison Project (ORA-IP). J Oper Oceanogr 8(S1):s80–s97. doi:10.1080/1755876X.2015.1022329
  5. Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E (2011) Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J Clim 24(1):231–250CrossRefGoogle Scholar
  6. Blockley EW, Martin MJ, McLaren AJ, Ryan AG, Waters J, Lea DJ, Mirouze I, Peterson KA, Sellar A, Storkey D (2014) Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts. Geosci Model Dev 7(6):2613–2638CrossRefGoogle Scholar
  7. Cavalieri DJ, Parkinson CL, Gloersen P, Gomiso JC, Zwally HJ (1999) Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J Geophys Res Oceans (1978–2012) 104(C7):15803–15814Google Scholar
  8. Caya A, Buehner M, Carrieres T (2010) Analysis and forecasting of sea ice conditions with three-dimensional variational data assimilation and a coupled ice–ocean model. J Atmos Ocean Technol 27(2):353–369CrossRefGoogle Scholar
  9. Chang Y-S, Zhang S, Rosati A, Delworth TL, Stern WF (2013) An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation. Clim Dyn 40(3–4):775–803. doi:10.1007/s00382-012-1412-2 CrossRefGoogle Scholar
  10. Chevallier M, Salas-Mélia D (2012) The role of sea ice thickness distribution in the Arctic sea ice potential predictability: a diagnostic approach with a coupled GCM. J Clim 25(8):3025–3038 CrossRefGoogle Scholar
  11. Chevallier M, Salas-Mélia D, Voldoire A, Déqué M, Garric G (2013) Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J Clim 26(16):6092–6104CrossRefGoogle Scholar
  12. Danabasoglu G, Yeager SG, Bailey D, Behrens E, Bentsen M, Bi D, Biastoch A, Boning C, Bozec A, Canuto V, Cassou C, Chassignet E, Coward AC, Danilov S, Diansky N, Drange H, Farneti R, Fernandez E, Fogli PG, Forget G, Fujii Y, Griffies SM, Gusev A, Heimbach P, Howard A, Jung T, Kelley M, Large WG, Leboissetier A, Lu J, Madec G, Marsland SJ, Masina S, Navarra A, Nurser AJG, Pirani A, Salas-Melia D, Samuels BL, Scheinert M, Sidorenko D, Treguier A-M, Tsujino H, Uotila P, Valcke S, Voldoire A, Wang Q (2014) North Atlantic simulations in coordinated ocean–ice reference experiments phase II (CORE-II). Part I: mean states. Ocean Model 73:76–107. doi:10.1016/j.ocemod.2013.10.005 CrossRefGoogle Scholar
  13. Day JJ, Hawkins E, Tietsche S (2014) Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys Res Lett 41(21):7566–7575CrossRefGoogle Scholar
  14. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  15. Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W (2012) The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens Environ 116:140–158CrossRefGoogle Scholar
  16. Dulière V, Fichefet T (2007) On the assimilation of ice velocity and concentration data into large-scale sea ice models. Ocean Sci Discuss 4(2):265–301CrossRefGoogle Scholar
  17. Ferry N, Parent L, Garric G, Barnier B, Jourdain NC (2010) Mercator global Eddy permitting ocean reanalysis GLORYS1V1: description and results. Mercator-Ocean Q Newslett 36:15–27Google Scholar
  18. Fichefet T, Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res Oceans (1978–2012) 102(C6):12609–12646CrossRefGoogle Scholar
  19. Flocco D, Schroeder D, Feltham DL, Hunke EC (2012) Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. J Geophys Res Oceans (1978–2012) 117:C09032. doi:10.1029/2012JC008195 Google Scholar
  20. Forget G, Campin J-M, Heimbach P, Hill CN, Ponte RM, Wunsch C (2015) ECCO 10 version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci Model Dev Discuss 8:3653–3743. doi:10.5194/gmdd-8-3653-2015 CrossRefGoogle Scholar
  21. Fowler C, Emery W, Tschudi M (2013) Polar pathfinder daily 25 km EASE-grid sea ice motion vectors. Version 2 (daily and mean gridded field). NASA DAAC at the NSIDC, BoulderGoogle Scholar
  22. Germe A, Houssais MN, Herbaut C, Cassou C (2011) Greenland Sea sea ice variability over 1979–2007 and its link to the surface atmosphere. J Geophys Res Oceans (1978–2012) 116(C10):C10034Google Scholar
  23. Guemas V, Blanchard-Wrigglesworth E, Chevallier M, Day JJ, Déqué M, Doblas-Reyes FJ, Fuckar N, Germe A, Hawkins E, Keeley S, Koenigk T, Salas-Mélia D, Tietsche S (2014) A review on Arctic sea ice predictability and prediction on seasonal-to-decadal timescales. Q J R Meteorol SocGoogle Scholar
  24. Hibler WD III (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4):815–846CrossRefGoogle Scholar
  25. Hunke EC, Dukowicz JK (2002) The elastic–viscous–plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere-incorporation of metric terms. Mon Weather Rev 130(7):1848–1865CrossRefGoogle Scholar
  26. Hunke EC, Lipscomb WH (2010) CICE: the Los Alamos sea ice model, documentation and software user’s manual, Version 4.1Google Scholar
  27. Ivanova N, Johannessen OM, Pedersen LT, Tonboe RT (2014) Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: a comparison of eleven sea ice concentration algorithms. IEEE Trans Geosci Remote Sens 52(11):7233–7246CrossRefGoogle Scholar
  28. Jakobson E, Vihma T, Palo T, Jakobson L, Keernik H, Jaagus J (2012) Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys Res Lett 39(10):L10802CrossRefGoogle Scholar
  29. Johnson M, Gaffigan S, Hunke E, Gerdes R (2007) A comparison of Arctic Ocean sea ice concentration among the coordinated AOMIP model experiments. J Geophys Res Oceans (1978–2012) 112(C4):C04S11Google Scholar
  30. Johnson M, Proshutinsky A, Aksenov Y, Nguyen AT, Lindsay R, Haas C, Zhang J, Diansky N, Kwok R, Maslowski W, Häkkinen S, Ashik I, de Cuevas B (2012) Evaluation of Arctic sea ice thickness simulated by AOMIP models. Journal of Geophysical Research: Oceans (1978–2012) 117(C8):C00D13Google Scholar
  31. Kaleschke L, Heygster G, Lüpkes C, Bochert A, Hartmann J, Haarpaintner J, Vihma T (2001) SSM/I sea ice remote sensing for mesoscale ocean–atmosphere interaction analysis: ice and icebergs. Can J Remote Sens 27(5):526–537CrossRefGoogle Scholar
  32. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–471CrossRefGoogle Scholar
  33. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631 CrossRefGoogle Scholar
  34. Kauker F, Kaminski T, Karcher M, Giering R, Gerdes R, Voßbeck M (2009) Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophys Res Lett 36(3):L03707Google Scholar
  35. Kern S, Kaleschke L, Spreen G (2010) Climatology of the Nordic (Irminger, Greenland, Barents, Kara and White/Pechora) Seas ice cover based on 85 GHz satellite microwave radiometry: 1992–2008. Tellus A 62(4):411–434CrossRefGoogle Scholar
  36. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori M, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteor Soc Jpn 93(1):5–48. doi:10.2151/jmsj.2015-001 CrossRefGoogle Scholar
  37. Kreyscher M, Harder M, Lemke P, Flato GM (2000) Results of the sea ice model intercomparison project: evaluation of sea ice rheology schemes for use in climate simulations. J Geophys Res 105:11299–11320CrossRefGoogle Scholar
  38. Kurtz NT, Farrell SL, Studinger M, Galin N, Harbeck JP, Lindsay R, Onana VD, Panzer B, Sonntag JG (2013) Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere 7(4):1035–1056CrossRefGoogle Scholar
  39. Kwok R (2011) Observational assessment of Arctic Ocean sea ice motion, export, and thickness in CMIP3 climate simulations. J Geophys Res Oceans (1978–2012) 116(C8):C00D05Google Scholar
  40. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J Geophys Res 114:C07005. doi:10.1029/2009JC005312 CrossRefGoogle Scholar
  41. Kwok R, Cunningham GF (2008) ICESat over Arctic sea ice: estimation of snow depth and ice thickness. J Geophys Res Oceans (1978–2012) 113(C8):C08010Google Scholar
  42. Kwok R, Rothrock DA (2009) Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys Res Lett 36(15):L15501CrossRefGoogle Scholar
  43. Kwok R, Cunningham GF, Pang SS (2004) Fram Strait sea ice outflow. J Geophys Res Oceans (1978–2012) 109(C1):C01009Google Scholar
  44. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. National Center for Atmospheric Research, BoulderGoogle Scholar
  45. Large WG, Yeager SG (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33(2–3):341–364CrossRefGoogle Scholar
  46. Laxon SW, Giles KA, Ridout AL, Wingham DJ, Willatt R, Cullen R, Kwok R, Schweiger A, Zhang J, Haas C, Hendricks S, Krishfield R, Kurtz N, Farrell S, Davidson M (2013) CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys Res Lett 40(4):732–737CrossRefGoogle Scholar
  47. Lindsay R (2010) New unified sea ice thickness climate data record. Eos Trans Am Geophys Union 91(44):405–406CrossRefGoogle Scholar
  48. Lindsay RW, Zhang J (2005) The thinning of Arctic sea ice, 1988–2003: have we passed a tipping point? J Clim 18(22):4879–4894CrossRefGoogle Scholar
  49. Lindsay RW, Zhang J (2006) Assimilation of ice concentration in an ice–ocean model. J Atmos Ocean Technol 23(5):742–749CrossRefGoogle Scholar
  50. Lindsay R, Haas C, Hendricks S, Hunkeler P, Kurtz N, Paden J, Panzer B, Sonntag J, Yungel J, Zhang J (2012) Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness. Geophys Res Lett 39(21):L21502CrossRefGoogle Scholar
  51. Lindsay R, Wensnahan M, Schweiger A, Zhang J (2014) Evaluation of seven different atmospheric reanalysis products in the Arctic. J Clim 27(7):2588–2606. doi:10.1175/JCLI-D-13-00014.1 CrossRefGoogle Scholar
  52. Lisæter KA, Rosanova J, Evensen G (2003) Assimilation of ice concentration in a coupled ice–ocean model, using the Ensemble Kalman filter. Ocean Dyn 53(4):368–388CrossRefGoogle Scholar
  53. Losch M, Menemenlis D, Campin J-M, Heimbach P, Hill C (2010) On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Model 33:129–144CrossRefGoogle Scholar
  54. Lüpkes C, Vihma T, Jakobson E, König-Langlo G, Tetzlaff A (2010) Meteorological observations from ship cruises during summer to the central Arctic: a comparison with reanalysis data. Geophys Res Lett 37(9):L09810CrossRefGoogle Scholar
  55. Markus T, Cavalieri DJ (2008) AMSR-E algorithm theoretical basis document: sea ice products, vol 3. NASA, Greenbelt, MD, USAGoogle Scholar
  56. Massonnet F, Fichefet T, Goosse H, Vancoppenolle M, Mathiot P, König Beatty C (2011) On the influence of model physics on simulations of Arctic and Antarctic sea ice. Cryosphere 5(3):687–699CrossRefGoogle Scholar
  57. Massonnet F, Goosse H, Fichefet T, Counillon F (2014) Calibration of sea ice dynamic parameters in an ocean–sea ice model using an ensemble Kalman filter. J Geophys Res Oceans 119(7):4168–4184. doi:10.1002/2013JC009705 CrossRefGoogle Scholar
  58. Massonnet F, Fichefet T, Goosse H (2015) Prospects for improved seasonal Arctic sea ice predictions from multivariate data assimilation. Ocean Model 88:16–25CrossRefGoogle Scholar
  59. Mellor GL, Kantha L (1989) An ice–ocean coupled model. J Geophys Res Oceans (1978–2012) 94(C8):10937–10954CrossRefGoogle Scholar
  60. Miller PA, Laxon SW, Feltham DL (2005). Improving the spatial distribution of modeled Arctic sea ice thickness. Geophys Res Lett 32(18):L18503CrossRefGoogle Scholar
  61. Mogensen K, Balmaseda MA, Weaver A (2012) and European Centre for Medium Range Weather Forecasts (2012) The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for system 4. European Centre for Medium-Range Weather ForecastsGoogle Scholar
  62. Msadek R, Vecchi GA, Winton M, Gudgel RG (2014) Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys Res Lett 41(14):5208–5215CrossRefGoogle Scholar
  63. Notz D (2014) sea-ice extent and its trend provide limited metrics of model performance. Cryosphere 8:229–243CrossRefGoogle Scholar
  64. Overland JE (1985) Atmospheric boundary layer structure and drag coefficients over sea ice (1978–2012). J Geophys Res Oceans 90(C5):9029–9049CrossRefGoogle Scholar
  65. Peterson BJ, McClelland J, Curry R, Holmes RM, Walsh JE, Aagaard K (2006) Trajectory shifts in the Arctic and subarctic freshwater cycle. Science 313:1061–1066CrossRefGoogle Scholar
  66. Peterson KA, Arribas A, Hewitt HT, Keen AB, Lea DJ, McLaren AJ (2014) Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system. Clim Dyn 44(1–2):147–162Google Scholar
  67. Rampal P, Weiss J, Marsan D (2009) Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. J Geophys Res Oceans (1978–2012) 114(C5):C05013Google Scholar
  68. Rampal P, Weiss J, Dubois C, Campin J-M (2011) IPCC climate models do not capture Arctic sea ice drift acceleration: consequences in terms of projected sea ice thinning and decline. J Geophys Res 116:C00D07. doi:10.1029/2011JC007110 CrossRefGoogle Scholar
  69. Rayner N, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res Atmos (1984–2012) 108(D14):4407Google Scholar
  70. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15(13):1609–1625CrossRefGoogle Scholar
  71. Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648CrossRefGoogle Scholar
  72. Rigor IG, Ortmeyer M (2004) The international Arctic Buoy program—monitoring the Arctic Ocean for forecasting and research. Arct Res USA 18:21–25Google Scholar
  73. Rothrock DA (1975) The energetics of the plastic deformation of pack ice by ridging. J Geophys Res 80(33):4514–4519CrossRefGoogle Scholar
  74. Roy F, Chevallier M, Smith G, Dupont F, Garric G, Lemieux J-F, Lu Y, Davidson F (2015) Arctic sea ice and freshwater sensitivity to the treatment of the atmosphere–ice–ocean surface layer. J Geophys Res. doi:10.1002/2014JC010677 Google Scholar
  75. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057CrossRefGoogle Scholar
  76. Sakov P, Counillon F, Bertino L, Lisæter KA, Oke PR, Korablev A (2012) TOPAZ4: an ocean–sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci 8(4):633CrossRefGoogle Scholar
  77. Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) Uncertainty in modeled Arctic sea ice volume. J Geophys Res Oceans (1978–2012) 116(C8):C00D06Google Scholar
  78. Shine KP, Henderson-Sellers A (1985) The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization. J Geophys Res Atmos (1984–2012) 90(D1):2243–2250CrossRefGoogle Scholar
  79. Smith GC, Roy F, Reszka M, Surcel Colan D, He Z, Deacu D, Bélanger JM, Skachko S, Liu Y, Dupont F, Lemieux J-F, Beaudoin C, Tranchant B, Drévillon M, Garric G, Testut C-E, Lellouche J-M, Pellerin P, Ritchie H, Lu Y, Davidson F, Buehner M, Caya A, Lajoie M (2015) Sea ice forecast verification in the Canadian Global Ice Ocean Prediction System. Q J R Meteorol Soc. doi:10.1002/qj.2555
  80. Stark JD, Ridley J, Martin M, Hines A (2008) Sea ice concentration and motion assimilation in a sea ice–ocean model. J Geophys Res Oceans (1978–2012) 113(C5):C05S91Google Scholar
  81. Steele M, Zhang J, Rothrock D, Stern H (1997) The force balance of sea ice in a numerical model of the Arctic Ocean. J Geophys Res Oceans (1978–2012) 102(C9):21061–21079CrossRefGoogle Scholar
  82. Storto A, Masina S, Dobricic S (2014) Estimation and impact of nonuniform horizontal correlation length scales for global ocean physical analyses. J Atmos Ocean Technol 31:2330–2349CrossRefGoogle Scholar
  83. Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39(16):L16502CrossRefGoogle Scholar
  84. Sumata H, Lavergne T, Girard-Ardhuin F, Kimura N, Tschudi MA, Kauker F, Karcher M, Gerdes R (2014) An intercomparison of Arctic ice drift products to deduce uncertainty estimates. J Geophys Res Oceans 119(8):4887–4921CrossRefGoogle Scholar
  85. Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2015) Influence of internal variability on Arctic sea-ice trends. Nat Clim Change 5(2):86–89CrossRefGoogle Scholar
  86. Tang YM, Balmaseda MA, Mogensen KS, Keeley SPE, Janssen PAEM (2013) Sensitivity of sea ice thickness to observational constraints on sea ice concentration. ECMWF Tech Memo Number 707Google Scholar
  87. Tietsche S, Notz D, Jungclaus JH, Marotzke J (2012) Assimilation of sea-ice concentration in a global climate model—physical and statistical aspects. Ocean Sci Discuss 9(4):2403CrossRefGoogle Scholar
  88. Tietsche S, Balmaseda MA, Zuo H, Mogensen K (2015) Arctic sea ice in the ECMWF MyOcean2 ocean reanalysis ORAP5. Clim Dyn doi: 10.1007/s00382-015-2673-3 Google Scholar
  89. Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, Kamachi M (2013) Improved analysis of the seasonal-interannual fields by a global ocean data assimilation system. Theor Appl Mech Jpn 61:31–48. doi:10.11345/nctam.61.31 Google Scholar
  90. Troccoli A, Kallberg TN (2004) Precipitation correction in the ERA-40 reanalysis. ERA-40 Project Report Series, 13Google Scholar
  91. Tsamados M, Feltham DL, Wilchinsky AV (2013) Impact of a new anisotropic rheology on simulations of Arctic sea ice. J Geophys Res Oceans 118(1):91–107CrossRefGoogle Scholar
  92. Tsamados M, Feltham DL, Schroeder D, Flocco D, Farrell SL, Kurtz N, Laxon S, Bacon S (2014) Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice. J Phys Oceanogr 44(5):1329–1353CrossRefGoogle Scholar
  93. Valdivieso M, Haines K, Zuo H, Lea D (2014) Freshwater and heat transports from global ocean synthesis. J Geophys Res Oceans. doi:10.1002/2013JC009357 Google Scholar
  94. Vernieres G, Rienecker MM, Kovach R, Keppenne LC (2012) The GEOS–iODAS: description and evaluation, Tech. Rep. TM-2012-104606, NASA, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, USAGoogle Scholar
  95. Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35(5):1175–1214CrossRefGoogle Scholar
  96. Voldoire A et al (2013) The CNRM-CM5. 1 Global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121CrossRefGoogle Scholar
  97. Warren SG, Rigor IG, Untersteiner N, Radionov VF, Bryazgin NN, Aleksandrov YI, Colony R (1999) Snow depth on Arctic sea ice. J Clim 12(6):1814–1829CrossRefGoogle Scholar
  98. Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Technol 17(4):525–531CrossRefGoogle Scholar
  99. Zhang J, Rothrock DA (2003) Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon Weather Rev 131(5):845–861CrossRefGoogle Scholar
  100. Zhang S, Harrison MJ, Rosati A, Wittenberg AT (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135(10):3541–3564. doi:10.1175/MWR3466.1 CrossRefGoogle Scholar
  101. Zuo H, Balmaseda MA, Mogensen K (2015) The ECMWF-MyOcean2 eddy-permitting ocean and sea-ice reanalysis ORAP5. Part 1: implementation, ECMWF technical memorandum 736Google Scholar
  102. Zygmuntowska M, Rampal P, Ivanova N, Smedsrud LH (2014) Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends. Cryosphere 8(2):705–720CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Matthieu Chevallier
    • 1
  • Gregory C. Smith
    • 2
  • Frédéric Dupont
    • 3
  • Jean-François Lemieux
    • 2
  • Gael Forget
    • 4
  • Yosuke Fujii
    • 5
  • Fabrice Hernandez
    • 6
    • 7
  • Rym Msadek
    • 8
    • 9
  • K. Andrew Peterson
    • 10
  • Andrea Storto
    • 11
  • Takahiro Toyoda
    • 5
  • Maria Valdivieso
    • 12
  • Guillaume Vernieres
    • 13
    • 14
  • Hao Zuo
    • 15
  • Magdalena Balmaseda
    • 15
  • You-Soon Chang
    • 16
  • Nicolas Ferry
    • 6
  • Gilles Garric
    • 6
  • Keith Haines
    • 12
  • Sarah Keeley
    • 15
  • Robin M. Kovach
    • 14
  • Tsurane Kuragano
    • 5
  • Simona Masina
    • 11
    • 17
  • Yongming Tang
    • 10
    • 15
  • Hiroyuki Tsujino
    • 5
  • Xiaochun Wang
    • 18
  1. 1.Centre National de Recherches Météorologiques (CNRM), Météo France/CNRS UMR3589ToulouseFrance
  2. 2.Recherche en Prévision Numérique EnvironnementaleEnvironnement et Changement Climatique CanadaDorvalCanada
  3. 3.Service Météorologique du CanadaEnvironnement et Changement Climatique CanadaDorvalCanada
  4. 4.Massachusetts Institute of TechnologyCambridgeUSA
  5. 5.Meteorological Research Institute (MRI)Japan Meteorological AgencyTsukubaJapan
  6. 6.Mercator OcéanRamonville-Saint-AgneFrance
  7. 7.Institut de Recherche pour le Développement (IRD)ToulouseFrance
  8. 8.NOAA Geophysical Fluid Dynamics Laboratory (GFDL)PrincetonUSA
  9. 9.Centre Européen de Recherche et de Formation Avancée au Calcul Scientifique (CERFACS)ToulouseFrance
  10. 10.Met Office Hadley CentreExeterUK
  11. 11.Euro-Mediterranean Centre for Climate ChangeBolognaItaly
  12. 12.National Centre for Earth Observation (NCEO)University of ReadingReadingUK
  13. 13.Science Systems and Applications, Inc.LanhamUSA
  14. 14.Global Modelling and Assimilation OfficeNASA Goddard Space Flight Center (GSFC)GreenbeltUSA
  15. 15.European Centre for Medium-Range Weather Forecasts (ECMWF)ReadingUK
  16. 16.Department of Earth Science EducationKongju National UniversityKongjuSouth Korea
  17. 17.National Institute for Geophysics and VolcanologyBolognaItaly
  18. 18.Joint Institute for Regional Earth System Science and EngineeringUCLALos AngelesUSA

Personalised recommendations