Advertisement

Climate Dynamics

, Volume 50, Issue 7–8, pp 2355–2368 | Cite as

Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

  • Shujuan Hu
  • Jifan Chou
  • Jianbo Cheng
Article

Abstract

In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

Keywords

Horizontal circulation Meridional circulation Zonal circulation Three-pattern decomposition of global atmospheric circulation 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (40805034 and 41475068), the Special Scientific Research Project for Public Interest (GYHY201206009) and the Fundamental Research Funds for the Central Universities of China (lzujbky-2012-13).

References

  1. Bayr T, Dommenget D, Martin T, Power SB (2014) The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Clim Dyn. doi: 10.1007/s00382-014-2091-y Google Scholar
  2. Bowman KP, Cohen PJ (1997) Interhemispheric exchange by seasonal modulation of the Hadley circulation. J Atmos Sci 54:2045–2059. doi: 10.1175/15200469(1997)054<2045:IEBSMO>2.0.CO;2 CrossRefGoogle Scholar
  3. Charney JG (1947) The dynamics of long waves in a baroclinic westerly current. J Meteorol 4:136–162. doi: 10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2 CrossRefGoogle Scholar
  4. Dima IM, Wallace JM (2003) On the seasonality of the Hadley cell. J Atmos Sci 60:1522–1527. doi: 10.1175/1520-0469(2003)060<1522:OTSOTH>2.0.CO;2 CrossRefGoogle Scholar
  5. Ding Q, Wang B, Wallace JM, Branstator G (2011) Tropical-extratropical teleconnections in boreal summer: observed interannual variability. J Clim 24:1878–1896. doi: 10.1175/2011JCLI3621.1 CrossRefGoogle Scholar
  6. Ferranti L, Palmer TN, Molteni F, Klinker E (1990) Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J Atmos Sci 47:2177–2199. doi: 10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2 CrossRefGoogle Scholar
  7. Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807. doi: 10.1126/science.275.5301.805 CrossRefGoogle Scholar
  8. Hartmann DL (1994) Global physical climatology. Academic Press, WalthamGoogle Scholar
  9. Holton JR (2004) Synoptic-scale motions I: quasi-geostrophic analysis. In: Cynar F (ed) An introduction to dynamic meteorology, 4th edn. Elsevier Academic Press, Amsterdam, pp 139–176Google Scholar
  10. Hu S (2006) The three-dimensional expansion of global atmospheric circumfluence and characteristic analyze of atmospheric vertical motion. Dissertation, LanZhou University (in Chinese) Google Scholar
  11. Hu S (2008) Connection between the short period evolution structure and vertical motion of the subtropical high pressure in July 1998. J Lanzhou Univ 44:28–32 (in Chinese) Google Scholar
  12. Julian PR, Chervin RM (1978) A study of the Southern Oscillation and Walker Circulation phenomenon. Mon Weather Rev 106:1433–1451. doi: 10.1175/1520-0493(1978)106<1433:ASOTSO>2.0.CO;2 CrossRefGoogle Scholar
  13. Kiladis GN, Feldstein SB (1994) Rossby wave propagation into the tropics in two GFDL general circulation models. Clim Dyn 9:245–252. doi: 10.1007/BF00208256 CrossRefGoogle Scholar
  14. Kousky VE, Kagano MT, Cavalcanti IFA (1984) A review of the Southern Oscillation: oceanic-atmospheric circulation changes and related rainfall anomalies. Tellus A 36:490504. doi: 10.1111/j.1600-0870.1984.tb00264.x CrossRefGoogle Scholar
  15. Lau WKM, Waliser DE, Roundy PE (2012) Tropical-extratropical interactions, intraseasonal variability in the atmosphere-ocean climate system. Springer, BerlinCrossRefGoogle Scholar
  16. Liu Z, Yang H (2003) Extratropical control of tropical climate, the atmospheric bridge and oceanic tunnel. Geophys Res Lett 30:1230. doi: 10.1029/2002GL016492 Google Scholar
  17. Liu H, Hu S, Xu M, Chou J (2008) Three-dimensional decomposition method of global atmospheric circulation. Sci China Ser D 51:386–402. doi: 10.1007/s11430-008-0020-9 CrossRefGoogle Scholar
  18. Oort AH, Peixóto JP (1983) Global angular momentum and energy balance requirements from observations. Adv Geophys 25:355–490. doi: 10.1016/S0065-2687(08)60177-6 CrossRefGoogle Scholar
  19. Oort AH, Yienger JJ (1996) Observed interannual variability in the Hadley circulation and its connection to ENSO. J Clim 9:2751–2767. doi: 10.1175/1520-0442(1996)009<2751:Oivith>2.0.Co;2 CrossRefGoogle Scholar
  20. Palmén E, Alaka MA (1952) On the budget of angular momentum in the zone between equator and 30°N. Tellus 4:324–331. doi: 10.1111/j.2153-3490.1952.tb01020.x CrossRefGoogle Scholar
  21. Rossby CG (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res 2:38–55CrossRefGoogle Scholar
  22. Tao Z, Zhou X, Zheng Y (2012) Theoretical basis of weather forecasting: quasi-geostrophic theory summary and operational applications. Adv Meteorol Sci Technol 2:6–16 (in Chinese) Google Scholar
  23. Taylor ME (1999) Partial differential equations I: basic theory. Beijing World Publishing Corporation, Beijing, pp 344–350Google Scholar
  24. Trenberth KE, Solomon A (1994) The global heat balance: heat transports in the atmosphere and ocean. Clim Dyn 10:107–134. doi: 10.1007/BF00210625 CrossRefGoogle Scholar
  25. Xu M (2001) Study on the three dimensional decomposition of large scale circulation and its dynamical feature. Dissertation, LanZhou University (in Chinese) Google Scholar
  26. Yu B, Boer GJ (2002) The roles of radiation and dynamical processes in the El Nino-like response to global warming. Clim Dyn 19:539–553. doi: 10.1007/s-00382-002-0244-x CrossRefGoogle Scholar
  27. Yu B, Zwiers FW (2010) Changes in equatorial atmospheric zonal circulations in recent decades. Geophys Res Lett 37:L05701. doi: 10.1029/2009GL042071 Google Scholar
  28. Zhou X, Wang X, Tao Z (2013) Review and discussion of some basic problems of the quasi-geostrophic theory. Meteorol Mon 39:401–409 (in Chinese) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Atmospheric SciencesLanzhou UniversityLanzhouChina

Personalised recommendations