Skip to main content

Advertisement

Log in

Sensitivity of systematic biases in South Asian summer monsoon simulations to regional climate model domain size and implications for downscaled regional process studies

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Global climate models (GCMs) have good skill in simulating climate at the global scale yet they show significant systematic errors at regional scale. For example, many GCMs exhibit significant biases in South Asian summer monsoon (SASM) simulations. Those errors not only limit application of such GCM output in driving regional climate models (RCMs) over these regions but also raise questions on the usefulness of RCMs derived from those GCMs. We focus on process studies where the RCM is driven by realistic lateral boundary conditions from atmospheric re-analysis which prevents remote systematic errors from influencing the regional simulation. In this context it is pertinent to investigate whether RCMs also suffer from similar errors when run over regions where their parent models show large systematic errors. Furthermore, the general sensitivity of the RCM simulation to domain size is informative in understanding remote drivers of systematic errors in the GCM and in choosing a suitable RCM domain that minimizes those errors. We investigate Met Office Unified Model systematic errors in SASM by comparing global and regional model simulations with targeted changes to the domain and forced with atmospheric re-analysis. We show that excluding remote drivers of systematic errors from the direct area of interest allows the application of RCMs for process studies of the SASM, despite the large errors in the parent global model. The findings in this study are also relevant to other models, many of which suffer from a similar pattern of systematic errors in global model simulations of the SASM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20:1071–1092. doi:10.1175/JCLI4035.1

    Article  Google Scholar 

  • Ashfaq M, Shi Y, Tung W-, Trapp RJ, Gao X, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett. doi:10.1029/2008GL036500

    Google Scholar 

  • Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Menard CB, Edwards JM, Hendry MA, Porson A, Gedney N, Mercado LM, Sitch S, Blyth E, Boucher O, Cox PM, Grimmond CSB, Harding RJ (2011) The Joint UK Land Environment Simulator (JULES), model description—part 1: energy and water fluxes. Geosci Model Dev 4:677–699. doi:10.5194/gmd-4-677-2011

    Article  Google Scholar 

  • Bhaskaran B, Jones RG, Murphy JM, Noguer M (1996) Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim Dyn 12:573–587

    Article  Google Scholar 

  • Bhaskaran B, Ramachandran A, Jones R, Moufouma-Okia W (2012) Regional climate model applications on sub-regional scales over the Indian monsoon region: the role of domain size on downscaling uncertainty. J Geophys Res 117:D10113. doi:10.1029/2012JD017956

    Article  Google Scholar 

  • Bollasina MA, Ming Y (2013) The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon. Clim Dyn 40:823–838. doi:10.1007/s00382-012-1347-7

    Article  Google Scholar 

  • Bollasina M, Nigam S (2009) Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations. Clim Dyn 33:1017–1032. doi:10.1007/s00382-008-0477-4

    Article  Google Scholar 

  • Bush SJ, Turner AG, Woolnough SJ, Martin GM, Klingaman NP (2014) The effect of increased convective entrainment on Asian monsoon biases in the MetUM general circulation model. Q J R Meteorol Soc. doi:10.1002/qj.2371

    Google Scholar 

  • Bush SJ, Levine RC, Turner AG, Martin GM, Woolnough SJ, Schiemann R, Mizielinski MS, Roberts MJ, Vidale PL, Demory M-E, Strachan J (2015) The resolution sensitivity of the South Asian Monsoon and Indo-Pacific in a global 0.3 deg AGCM. Clim Dyn (submitted)

  • Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, Boucher O, Harding RJ, Huntingford C, Cox PM (2011) The Joint UK Land Environment Simulator (JULES), model description—part 2: carbon fluxes and vegetation dynamics. Geosci Model Dev 4:701–722. doi:10.5194/gmd-4-701-2011

    Article  Google Scholar 

  • Collins M, Achutarao K, Ashok K, Bhandari S, Mitra AK, Prakash S, Srivastava R, Turner A (2013) Observational challenges in evaluating climate models. Nat Clim Change 3:940–941. doi:10.1038/nclimate2012

    Article  Google Scholar 

  • Cullen MJP (1993) The unified forecast climate model. Meteorol Mag 122:81–94

    Google Scholar 

  • Dash SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and rainfall using RegCM3. Theor Appl Climatol 86:161–172

    Article  Google Scholar 

  • Dash SK, Mamgain A, Pattnayak KC, Giorgi F (2013) Spatial and temporal variations in Indian summer monsoon rainfall and temperature: an analysis based on RegCM3 simulations. Pure Appl Geophys 170:655–674

    Article  Google Scholar 

  • Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q J R Meteorol Soc 131:1759–1782. doi:10.1256/qj.04.101

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, Mcnally AP, Monge-Sanz BM, Morcrette J-, Park B-, Peubey C, de Rosnay P, Tavolato C, Thépaut J-, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Diaconescu EP, Laprise R (2013) Can added value be expected in RCM-simulated large scales? Clim Dyn 41:1769–1800. doi:10.1007/s00382-012-1649-9

    Article  Google Scholar 

  • Dobler A, Ahrens B (2010) Analysis of the Indian summer monsoon system in the regional climate model COSMO-CLM. J Geophys Res D Atmos. doi:10.1029/2009JD013497

    Google Scholar 

  • Duffy PB, Govindasamy B, Lorio JP, Milovich J, Sperber KR, Taylor KE, Wehner MF, Thompson SL (2003) High-resolution simulations of global climate, part 1: present climate. Clim Dyn 21:371–390

    Article  Google Scholar 

  • Gadgil S, Sajani S (1998) Monsoon precipitation in the AMIP runs. Clim Dyn 14:659–689

    Article  Google Scholar 

  • Giorgi F (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352

    Article  Google Scholar 

  • Goswami BN, Krishnamurthy V, Annamalai H (1999) A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Q J R Meteorol Soc 125:611–633

    Article  Google Scholar 

  • Gregory D, Rowntree PR (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon Weather Rev 118:1483–1506. doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50. doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett. doi:10.1029/2009GL040000

    Google Scholar 

  • Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449

    Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159. doi:10.1007/s00704-006-0282-0

    Article  Google Scholar 

  • Kumar RK, Sahai AK, Krishna Kumar K, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90:334–345

    Google Scholar 

  • Kumar KK, Kamala K, Rajagopalan B, Hoerling M, Eischeid J, Patwardhan S, Srinivasan G, Goswami B, Nemani R (2011a) The once and future pulse of Indian monsoonal climate. Clim Dyn 36:2159–2170. doi:10.1007/s00382-010-0974-0

    Article  Google Scholar 

  • Kumar KK, Patwardhan SK, Kulkarni A, Kamala K, Rao KK, Jones R (2011b) Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Curr Sci 101:312–326

    Google Scholar 

  • Leduc M, Laprise R, Moretti-Poisson M, Morin J (2011) Sensitivity to domain size of mid-latitude summer simulations with a regional climate model. Clim Dyn 37:343–356. doi:10.1007/s00382-011-1008-2

    Article  Google Scholar 

  • Levine RC, Turner AG (2012) Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Clim Dyn 38:2167–2190. doi:10.1007/s00382-011-1096-z

    Article  Google Scholar 

  • Liebmann B, Hendon HH, Glick JD (1994) The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J Meteorol Soc Jpn 72:401–412

    Google Scholar 

  • Lin J-, Weickman KM, Kiladis GN, Mapes BE, Schubert SD, Suarez MJ, Bacmeister JT, Lee M- (2008) Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J Clim 21:4541–4567

    Article  Google Scholar 

  • Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB (2000) A new boundary layer mixing scheme. Part I: scheme description and single-column model tests. Mon Weather Rev 128:3187–3199. doi:10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2

    Article  Google Scholar 

  • Martin GM, Ringer MA, Pope VD, Jones A, Dearden C, Hinton TJ (2006) The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part 1: model description and global climatology. J Clim 19:1274–1301. doi:10.1175/JCLI3636.1

    Article  Google Scholar 

  • Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S, Reichler T, Kim J (2010) Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J Clim 23:5933–5957. doi:10.1175/2010JCLI3541.1

    Article  Google Scholar 

  • McCarthy MP, Sanjay J, Booth BBB, Kumar KK, Betts RA (2012) The influence of vegetation on the ITCZ and South Asian monsoon in HadCM3. Earth Syst Dyn 3:87–96. doi:10.5194/esd-3-87-2012

    Article  Google Scholar 

  • Parthasarathy B, Kumar KR, Kothawale DR (1992) Indian summer monsoon rainfall indices: 1871–1990. Meteorol Mag 121:174–186

    Google Scholar 

  • Philippe PL, Christensen JH, Saeed F, Kumar P, Asharaf S, Ahrens B, Wiltshire AJ, Jacob D, Hagemann S (2011) Can regional climate models represent the Indian monsoon? RID A-7439-2008. J Hydrometeorol 12:849–868. doi:10.1175/2011JHM1327.1

    Article  Google Scholar 

  • Pokhrel S, Dhakate A, Chaudhari HS, Saha SK (2013) Status of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon. Theor Appl Climatol 111:65–78

    Article  Google Scholar 

  • Polanski S, Rinke A, Dethloff K (2010) Validation of the HIRHAM-simulated Indian summer monsoon circulation. Adv Meteorol. doi:10.1155/2010/415632

    Google Scholar 

  • Rajeevan M, Bhate J (2009) A high resolution daily gridded rainfall dataset (1971–2005) for mesoscale meteorological studies. Curr Sci 96:558–562

    Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. doi:10.1175/2007JCLI1824.1

    Article  Google Scholar 

  • Rockel B, Geyer B (2008) The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorol Z 17:487–498. doi:10.1127/0941-2948/2008/0297

    Article  Google Scholar 

  • Saeed F, Hagemann S, Jacob D (2012) A framework for the evaluation of the South Asian summer monsoon in a regional climate model applied to REMO. Int J Climatol 32:430–440. doi:10.1002/joc.2285

    Article  Google Scholar 

  • Shekhar MS, Dash SK (2005) Effect of Tibetan spring snow on the Indian summer monsoon circulation and associated rainfall. Curr Sci 88:1840–1844

    Google Scholar 

  • Sperber KR, Slingo JM, Annamalai H (2000) Predictability and the relationship between subseasonal and interannual variability during the Asian summer monsoon. Q J R Meteorol Soc 126:2545–2574

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang I-, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 versus CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi:10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Syed FS, Iqbal W, Syed A, Rasul G (2014) Uncertainties in the regional climate models simulations of South-Asian summer monsoon and climate change. Clim Dyn 42:2079–2097. doi:10.1007/s00382-013-1963-x

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res D Atmos 106:7183–7192

    Article  Google Scholar 

  • Turner AG, Martin GM, Levine RC (2014) The role of peninsular India in the South Asian summer monsoon. Clim Dyn (submitted)

  • Walters DN, Best MJ, Bushell AC, Copsey D, Edwards JM, Falloon PD, Harris CM, Lock AP, Manners JC, Morcrette CJ, Roberts MJ, Stratton RA, Webster S, Wilkinson JM, Willett MR, Boutle IA, Earnshaw PD, Hill PG, MacLachlan C, Martin GM, Moufouma-Okia W, Palmer MD, Petch JC, Rooney GG, Scaife AA, Williams KD (2011) The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci Model Dev 4:919–941. doi:10.5194/gmd-4-919-2011

    Article  Google Scholar 

  • Walters DN, Williams KD, Boutle IA, Bushell AC, Edwards JM, Field PR, Lock AP, Morcrette CJ, Stratton RA, Wilkinson JM, Willett MR, Bellouin N, Bodas-Salcedo A, Brooks ME, Copsey D, Earnshaw PD, Hardiman SC, Harris CM, Levine RC, MacLachlan C, Manners JC, Martin GM, Milton SF, Palmer MD, Roberts MJ, Rodríguez JM, Tennant WJ, Vidale PL (2013) The Met Office Unified Model global atmosphere 4.0 and JULES global land 4.0 configurations. Geosci Model Dev Discuss 6:2813–2881. doi:10.5194/gmdd-6-2813-2013

    Article  Google Scholar 

  • Wang B, Fan Z (1999) Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638

    Article  Google Scholar 

  • Wang B, Wu R, Lau K- (2001) Interannual variability of the asian summer monsoon: contrasts between the Indian and the Western North Pacific-East Asian monsoons. J Clim 14:4073–4090. doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2

    Article  Google Scholar 

  • Webster PJ, Yang Song (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926

    Article  Google Scholar 

  • Wilby RL, Fowler HJ (2010) Regional climate downscaling. In: Fung CF, Lopez A, New M (eds) Modelling the impact of climate change on water resources. Wiley-Blackwell, Chichester, pp 34–85

    Chapter  Google Scholar 

  • Wilson DR, Ballard SP (1999) A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q J R Meteorol Soc 125:1607–1636. doi:10.1256/smsqj.55706

    Article  Google Scholar 

  • Yatagai A, Arakawa O, Kamiguchi K, Kawamoto H, Nodzu MI, Hamada A (2009) A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA 5:137–140

    Article  Google Scholar 

Download references

Acknowledgments

First author thanks the Felix Scholarships for funding his DPhil. The model simulations were carried out at Met Office. Richard Jones and Richard Levine were supported by Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and Richard Levine by the NERC Changing Water Cycle project SAPRISE (NE/I022469/1). The authors would like to thank Gill Martin for comments on earlier drafts of the manuscripts, and two anonymous reviewers for comments which helped to significantly improve the manuscript. We also acknowledge use of the Ferret program, product of NOAA’s Pacific Marine Environmental Laboratory, for analysis and graphics in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Karmacharya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmacharya, J., Levine, R.C., Jones, R. et al. Sensitivity of systematic biases in South Asian summer monsoon simulations to regional climate model domain size and implications for downscaled regional process studies. Clim Dyn 45, 213–231 (2015). https://doi.org/10.1007/s00382-015-2565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2565-6

Keywords

Navigation