Skip to main content

Higher Laurentide and Greenland ice sheets strengthen the North Atlantic ocean circulation

Abstract

During the last glacial–interglacial cycle, changes in the large-scale North Atlantic ocean circulation occurred, and at the same time topography of the Laurentide and Greenland ice sheets also varied. In this study, we focus on detecting the changes of the North Atlantic gyres, western boundary current, and the Atlantic meridional overturning circulation (AMOC) corresponding to different Laurentide and Greenland ice sheet topographies. Using an Earth System Model, we conducted simulations for five climate states with different ice sheet topographies: Pre-industrial, Mid Holocene, Last Glacial Maximum, 32 kilo years before present and Eemian interglacial. Our simulation results indicate that higher topographies of the Laurentide and Greenland ice sheets strengthen surface wind stress curl over the North Atlantic ocean, intensifying the subtropical and subpolar gyres and the western boundary currents. The corresponding decrease in sea surface height from subtropical to subpolar favors a stronger AMOC. An offshore shift of the Gulf Stream is also identified during the glacial periods relative to that during the Pre-industrial due to lower sea levels, explaining a weaker glacial Gulf Stream detected in proxy data. Meanwhile, the North Atlantic gyres and AMOC demonstrate a positively correlated relation under each of the climate conditions with higher ice sheets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Backeberg BC, Penven P, Rouault M (2012) Impact of intensified Indian Ocean winds on mesoscale variability in the Agulhas system. Nat Clim Change 2:608–612

    Article  Google Scholar 

  2. Berger AL (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  3. Bouttes N, Paillard D, Roche DM, Brovkin V, Bopp L (2011) Last Glacial Maximum CO2 and δ13C successfully reconciled. Geophys Res Lett 38:L02705

    Google Scholar 

  4. Brook EJ, Harder S, Severinghaus J, Steig EJ, Sucher CM (2000) On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem Cycles 14:559–572

    Article  Google Scholar 

  5. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25 degrees N. Nature 438:655–657

    Article  Google Scholar 

  6. Burkholder KC, Lozier MS (2011) Subtropical to subpolar pathways in the North Atlantic: deductions from Lagrangian trajectories. J Geophys Res Oceans 116:C07017

  7. Byrkjedal O, Kvamsto N, Meland M, Jansen E (2006) Sensitivity of last glacial maximum climate to sea ice conditions in the Nordic Seas. Clim Dyn 26:473–487

    Article  Google Scholar 

  8. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hosteler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714

    Article  Google Scholar 

  9. CLIMAP Project Members (CLIMAP) (1981) Seasonal reconstructions of the Earth’s surface at the Last Glacial Maximum. Map Chart Ser. MC-36. Geological Society of America, Boulder

    Google Scholar 

  10. Crucifix M, Braconnot P, Harrison SP, Otto-Bliesner B (2005) Second phase of paleoclimate modelling intercomparison project. EOS Trans AGU 86(28):264. doi:10.1029/2005EO280003

    Article  Google Scholar 

  11. Curry RG, McCartney MS (2001) Ocean gyre circulation changes associated with the North Atlantic Oscillation. J Phys Oceanogr 31:3374–3400

    Article  Google Scholar 

  12. Curry WB, Oppo DW (2005) Glacial water mass geometry and the distribution of delta C-13 of Sigma CO2 in the western Atlantic Ocean. Paleoceanography 20:1017

    Article  Google Scholar 

  13. de Vernal A, Hillaire-Marcel C, Peltier WR, Weaver AJ (2002) Structure of the upper water column in the northwest North Atlantic: modern versus Last Glacial Maximum conditions. Paleoceanography 17:PA1050

  14. Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3:343–360

    Article  Google Scholar 

  15. Dzhiganshin GF, Polonsky AB (2009) Low-frequency variations of the Gulf-Stream transport: description and mechanisms. Phys Oceanogr 19:151–169

    Article  Google Scholar 

  16. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158

    Article  Google Scholar 

  17. Gong X, Knorr G, Lohmann G, Zhang X (2013) Dependence of abrupt Atlantic meridional ocean circulation changes on climate background states. Geophys Res Lett 40:3698–3704. doi:10.1002/grl.50701

    Article  Google Scholar 

  18. Hagemann S, Dümenil L (1998) A parametrization of the lateral waterflow for the global scale. Clim Dynam 14:17–31

    Article  Google Scholar 

  19. Hesse T, Butzin M, Bickert T, Lohmann G (2011) A model-data comparison of delta C-13 in the glacial Atlantic Ocean. Paleoceanography. doi:10.1029/2010PA002085

    Google Scholar 

  20. Hofmann M, Rahmstorf S (2009) On the stability of the Atlantic meridional overturning circulation. Proc Natl Acad Sci USA 106:20584–20589

    Article  Google Scholar 

  21. Hogg NG (1992) On the transport of the Gulf-Stream between Cape-Hatteras and the Grand-Banks. Deep Sea Res Part A Oceanogr Res Pap 39:1231–1246

    Article  Google Scholar 

  22. Hogg NG, Johns WE (1995) Western boundary currents. U.S. National Report to Internatonal Union of Geodesy and Geophysics 1991–1994. Suppl Rev Geophys 33:1311–1334

    Article  Google Scholar 

  23. Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    Article  Google Scholar 

  24. Justino F, Peltier WR (2008) Climate anomalies induced by the arctic and antarctic oscillations: glacial maximum and present-day perspectives. J Clim 21:459–475

    Article  Google Scholar 

  25. Keigwin LD, Curry WB, Lehman SJ, Johnsen S (1994) The role of the deep-ocean in North-Atlantic climate-change between 70-Kyr and 130-Kyr Ago. Nature 371:323–326

    Article  Google Scholar 

  26. Levitus S (1982) Climatological atlas of the world ocean. NOAA/ERL GFDL Professional Paper 13, Princeton

    Google Scholar 

  27. Lohmann G, Lorenz S (2000) On the hydrological cycle under paleoclimatic conditions as derived from AGCM simulations. J Geophys Res Atmos 105:17417–17436

    Article  Google Scholar 

  28. Lunt DJ, Abe-Ouchi A, Bakker P, Berger A, Braconnot P, Charbit S, Fischer N, Herold N, Jungclaus JH, Khon VC, Krebs-Kanzow U, Langebroek PM, Lohmann G, Nisancioglu KH, Otto-Bliesner BL, Park W, Pfeiffer M, Phipps SJ, Prange M, Rachmayani R, Renssen H, Rosenbloom N, Schneider B, Stone EJ, Takahashi K, Wei W, Yin Q, Zhang ZS (2013) A multi-model assessment of last interglacial temperatures. Clim Past 9:699–717

    Article  Google Scholar 

  29. Lynch-Stieglitz J, Curry WB, Slowey N (1999) Weaker Gulf Stream in the Florida straits during the last glacial maximum. Nature 402:644–648

    Article  Google Scholar 

  30. Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR, Herguera JC, Hirschi JJM, Ivanova EV, Kissel C, Marchal O, Marchitto TM, McCave IN, McManus JF, Mulitza S, Ninnemann U, Peeters F, Yu EF, Zahn R (2007) Atlantic meridional overturning circulation during the Last Glacial Maximum. Science 316:66–69

    Article  Google Scholar 

  31. Lynch-Stieglitz J, Curry WB, Lund DC (2009) Florida Straits density structure and transport over the last 8000 years. Paleoceanography. doi:10.1029/2008PA001717

    Google Scholar 

  32. Manabe S, Stouffer RJ (1995) Simulation of abrupt climate-change induced by fresh-water input to the North-Atlantic Ocean. Nature 378:165–167

    Article  Google Scholar 

  33. Marchal O, Curry WB (2008) On the abyssal circulation in the glacial Atlantic. J Phys Oceanogr 38:2014–2037

    Article  Google Scholar 

  34. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127

    Article  Google Scholar 

  35. Martrat B, Grimalt JO, Shackleton NJ, de Abreu L, Hutterli MA, Stocker TF (2007) Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317:502–507

    Article  Google Scholar 

  36. McManus JF, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    Article  Google Scholar 

  37. Montoya M, Levermann A (2008) Surface wind-stress threshold for glacial Atlantic overturning. Geophys Res Lett. doi:10.1029/2007GL032560

    Google Scholar 

  38. Montoya M, Born A, Levermann A (2011) Reversed North Atlantic gyre dynamics in present and glacial climates. Clim Dyn 36:1107–1118

    Article  Google Scholar 

  39. Munk WH (1950) On the wind-driven ocean circulation. Journal of Meteorology 7:79–93

    Article  Google Scholar 

  40. Oka A, Hasumi H, Abe-Ouchi A (2012) The thermal threshold of the Atlantic meridional overturning circulation and its control by wind stress forcing during glacial climate. Geophys Res Lett. doi:10.1029/2012GL051421

    Google Scholar 

  41. Otto-Bliesner BL, Hewitt CD, Marchitto TM, Brady E, Abe-Ouchi A, Crucifix M, Murakami S, Weber SL (2007) Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys Res Lett. doi:10.1029/2007GL029475

    Google Scholar 

  42. Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750

    Article  Google Scholar 

  43. Pausata FSR, Li C, Wettstein JJ, Nisancioglu KH, Battisti DS (2009) Changes in atmospheric variability in a glacial climate and the impacts on proxy data: a model intercomparison. Clim Past 5:489–502

    Article  Google Scholar 

  44. Pausata FSR, Li C, Wettstein JJ, Kageyama M, Nisancioglu KH (2011) The key role of topography in altering North Atlantic atmospheric circulation during the last glacial period. Clim Past 7:1089–1101

    Article  Google Scholar 

  45. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ice-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  46. Peltier WR (2007) History of earth rotation. Treatise Geophys 9:243–293

    Article  Google Scholar 

  47. Pfeiffer M, Lohmann G (2013) the last interglacial as simulated by an atmosphere-ocean general circulation model: sensitivity studies on the influence of the Greenland ice sheet. In: Lohmann G, Grosfeld K, Wolf-Gladrow D, Unnithan V, Notholt J, Wegner A (eds) Earth system science: bridging the gaps between disciplines perspectives from a multi-disciplinary Helmholtz research school Springer briefs in earth system sciences. Springer, Heidelberg

    Google Scholar 

  48. Pflaumann U, Sarnthein M, Chapman M, d’Abreu L, Funnell B, Huels M, Kiefer T, Maslin M, Schulz H, Swallow J, van Kreveld S, Vautravers M, Vogelsang E, Weinelt M (2003) Glacial North Atlantic: sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography. doi:10.1029/2002PA000774

    Google Scholar 

  49. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn 29:565–574

    Article  Google Scholar 

  50. Rhines PB (1986) Vorticity dynamics of the oceanic general-circulation. Annu Rev Fluid Mech 18:433–497

    Article  Google Scholar 

  51. Rhines PB, Schopp R (1991) The wind-driven circulation: quasi-geostrophic simulations and theory for nonsymmetric winds. J Phys Oceanogr 21:1438–1469

    Article  Google Scholar 

  52. Röckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part 1: model description. MPI-Report 349(127), Hamburg

    Google Scholar 

  53. Siddall M, Rohling EJ, Almogi-Labin A, Hemleben Ch, Meischner D, Schmelzer I, Smeed DA (2003) Sea-level fluctuations during the last glacial cycle. Nature 423:853–858

    Article  Google Scholar 

  54. Slowey NC, Curry WB (1992) Enhanced ventilation of the North-Atlantic subtropical gyre thermocline during the last glaciation. Nature 358:665–668

    Article  Google Scholar 

  55. Sowers T, Alley RB, Jubenville J (2003) Ice core records of atmospheric N2O covering the last 106,000 years. Science 301:945–948

    Article  Google Scholar 

  56. Stone EJ, Lunt DJ, Annan JD, Hargreaves JC (2013) Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Clim Past 9:621–639

    Article  Google Scholar 

  57. Ullman DJ, LeGrande AN, Carlson AE, Anslow FS, Licciardi JM (2014) Assessing the impact of Laurentide Ice-Sheet topography on glacial climate. Clim Past 10:487–507

    Article  Google Scholar 

  58. Van Meerbeeck CJ, Renssen H, Roche DM (2009) How did Marine isotope stage 3 and last glacial maximum climates differ?—perspectives from equilibrium simulations. Clim Past 5:33–51

    Article  Google Scholar 

  59. Vautravers MJ, Shackleton NJ, Lopez-Martinez C, Grimalt JO (2004) Gulf Stream variability during marine isotope stage 3. Paleoceanography. doi:10.1029/2003PA000966

    Google Scholar 

  60. Vavrus S, Kutzbach JE (2002) Sensitivity of the thermohaline circulation to increased CO2 and lowered topography. Geophys Res Lett. doi:10.1029/2002GL014814

    Google Scholar 

  61. Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat Sci Rev 21:295–305

    Article  Google Scholar 

  62. Weber SL, Drijfhout SS, Abe-Ouchi A, Crucifix M, Eby M, Ganopolski A, Murakami S, Otto-Bliesner B, Peltier WR (2007) The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations. Clim. Past 3:51–64. doi:10.5194/cp-3-51-2007

    Article  Google Scholar 

  63. Wei W, Lohmann G (2012) Simulated Atlantic multidecadal oscillation during the holocene. J Clim 25:6989–7002

    Article  Google Scholar 

  64. Wei W, Lohmann G, Dima M (2012) Distinct modes of internal variability in the global meridional overturning circulation associated with the Southern Hemisphere westerly winds. J Phys Oceanogr 42:785–801

    Article  Google Scholar 

  65. Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121

    Article  Google Scholar 

  66. Zhang X, Lohmann G, Knorr G, Xu X (2013) Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation. Clim Past 9:2319–2333

    Article  Google Scholar 

  67. Zhang X, Lohmann G, Knorr G, Purcell C (2014) Abrupt glacial climate shifts controlled by ice sheet changes. Nature 512:290 via a localpositive atmosphere–ocean–sea-ice feedbackin the North Atlantic

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank their colleagues from the Paleo-climate Dynamics Group of Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research for continuing support and discussion. Especially, we thank the colleagues Dr. Paola Moffa Sanchez and Dr. Lukas Jonkers in the School of Earth and Ocean Sciences, Cardiff University, for several effective discussions. The study presented by this paper was initiated when X.G. visited the International Arctic Research Center (IARC), University of Alaska Fairbanks, in 2011 under the support of German Helmholtz POLMAR Project and Japan Agency for Marine-Earth Science and Technology through IARC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xun Gong.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Zhang, X., Lohmann, G. et al. Higher Laurentide and Greenland ice sheets strengthen the North Atlantic ocean circulation. Clim Dyn 45, 139–150 (2015). https://doi.org/10.1007/s00382-015-2502-8

Download citation

Keywords

  • North Atlantic gyres
  • Western boundary current
  • Atlantic meridional overturning circulation
  • Ice sheet
  • Glacial climate states