Skip to main content

Asymmetric impact of the physiological effect of carbon dioxide on hydrological responses to instantaneous negative and positive CO2 forcing

Abstract

We conducted sensitivity experiments using a coupled atmosphere–ocean general circulation model to examine the asymmetry between the hydrological responses to instantaneous positive and negative CO2 forcing and the impact of the CO2 physiological effects (CDPEs) on these responses. This study focuses on the fast response occurring on time scales shorter than 1 year after imposing CO2 forcing. Experiments investigating the CO2 physiological effect show that the fast response of precipitation to positive CO2 forcing is a decrease in the global and annual mean, whereas that of negative forcing is an increase the global and annual mean precipitation. The fast global precipitation response to negative forcing is stronger than the response to positive forcing. In contrast, the experiments without the CDPE reveal similar magnitudes of the fast global precipitation responses to negative and positive CO2 forcing. Significant differences in the magnitudes of the fast precipitation response due to the CDPE are found in tropical regions such as the Amazon Basin, the Maritime Continents, and tropical Africa, where C3-type plants are common. The stomatal conductance of plant leaves is decreased by both positive and negative CO2 forcing, which suppress the transpiration from the leaves. Consequently, the CDPE enhances the asymmetry of the fast precipitation responses to positive and negative CO2 forcing. The asymmetric impact of CDPE requires a careful evaluation of future hydrological changes which is constrained by paleoclimate evidence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Andrews T (2009) Forcing and response in simulated 20th and 21st century surface energy and precipitation trends. J Geophys Res Atmos. doi:10.1029/2009jd011749

    Google Scholar 

  2. Andrews T, Forster PM, Gregory JM (2009) A surface energy perspective on climate change. J Clim 22:2557–2570. doi:10.1175/2008jcli2759.1

    Article  Google Scholar 

  3. Andrews T, Doutriaux-Boucher M, Boucher O, Forster PM (2011) A regional and global analysis of carbon dioxide physiological forcing and its impact on climate. Clim Dyn 36:783–792. doi:10.1007/s00382-010-0742-1

    Article  Google Scholar 

  4. Bala G, Duffy PB, Taylor KE (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Natl Acad Sci USA 105:7664–7669. doi:10.1073/pnas.0711648105

    Article  Google Scholar 

  5. Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–799

    Article  Google Scholar 

  6. Betts RA et al (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041. doi:10.1038/nature06045

    Article  Google Scholar 

  7. Boucher O, Jones A, Betts RA (2009) Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Clim Dyn 32:237–249. doi:10.1007/s00382-008-0459-6

    Article  Google Scholar 

  8. Braconnot P et al. (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2:417–424. http://www.nature.com/nclimate/journal/v2/n6/abs/nclimate1456.html#supplementary-information

  9. Cao L, Bala G, Caldeira K (2012) Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ Res Lett 7:034015

    Article  Google Scholar 

  10. Chadwick R, Good P (2013) Understanding nonlinear tropical precipitation responses to CO2 forcing. Geophys Res Lett 40:4911–4915. doi:10.1002/grl.50932

    Article  Google Scholar 

  11. Chadwick R, Wu P, Good P, Andrews T (2013) Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments. Clim Dyn 40:295–316. doi:10.1007/s00382-012-1287-2

    Article  Google Scholar 

  12. Collatz GJ, Berry JA, Farquhar GD, Pierce J (1990) The relationship between the Rubisco reaction mechanism and models of photosynthesis*. Plant Cell Environ 13:219–225. doi:10.1111/j.1365-3040.1990.tb01306.x

    Article  Google Scholar 

  13. Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136. doi:10.1016/0168-1923(91)90002-8

    Article  Google Scholar 

  14. Collatz G, Ribas-Carbo M, Berry J (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct Plant Biol 19:519–538. doi:10.1071/PP9920519

    Google Scholar 

  15. Dong B, Gregory JM, Sutton RT (2009) Understanding land sea warming contrast in response to increasing greenhouse gases. Part I: transient adjustment. J Clim 22:3079–3097. doi:10.1175/2009jcli2652.1

    Article  Google Scholar 

  16. Doutriaux-Boucher M, Webb MJ, Gregory JM, Boucher O (2009) Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys Res Lett 36:L02703. doi:10.1029/2008gl036273

    Google Scholar 

  17. Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90. doi:10.1007/bf00386231

    Article  Google Scholar 

  18. Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838. doi:10.1038/nature04504

    Article  Google Scholar 

  19. Good P et al (2012) A step-response approach for predicting and understanding non-linear precipitation changes. Clim Dyn 39:2789–2803. doi:10.1007/s00382-012-1571-1

    Article  Google Scholar 

  20. Gregory J, Webb M (2008) Tropospheric adjustment induces a cloud component in CO2 forcing. J Clim 21:58–71. doi:10.1175/2007jcli1834.1

    Article  Google Scholar 

  21. Gregory JM et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi:10.1029/2003gl018747

    Google Scholar 

  22. Hasumi H, Emori S (2004) K-1 Coupled GCM (MIROC) decription. K-1 Model Developers Tech Rep 1:34 pp

  23. Joshi M, Gregory J (2008) Dependence of the land-sea contrast in surface climate response on the nature of the forcing. Geophys Res Lett 35:L24802. doi:10.1029/2008gl036234

    Article  Google Scholar 

  24. Sellers PJ et al (1996a) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1406. doi:10.1126/science.271.5254.1402

    Article  Google Scholar 

  25. Sellers PJ et al (1996b) A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: Model formulation. J Clim 9:676–705. doi:10.1175/1520-0442(1996)009<0676:arlspf>2.0.co;2

    Article  Google Scholar 

  26. Yoshimori M, Yokohata T, Abe-Ouchi A (2009) A comparison of climate feedback strength between CO2 doubling and LGM experiments. J Clim 22:3374–3395. doi:10.1175/2009jcli2801.1

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Risk Information on Climate Change (SOUSEI program) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Environment Research and Technology Development Fund (S-10) of the Ministry of the Environment of Japan. The Earth Simulator at JAMSTEC and an NEC SX at NIES were employed to perform the AOGCM simulations. We thank two anonymous reviewers for helping to significant improve this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manabu Abe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abe, M., Shiogama, H., Yokohata, T. et al. Asymmetric impact of the physiological effect of carbon dioxide on hydrological responses to instantaneous negative and positive CO2 forcing. Clim Dyn 45, 2181–2192 (2015). https://doi.org/10.1007/s00382-014-2465-1

Download citation

Keywords

  • Carbon dioxide physiological effect
  • Hydrological response
  • Carbon dioxide forcing
  • Land surface model
  • General circulation model