Skip to main content

Understanding the systematic air temperature biases in a coupled climate system model through a process-based decomposition method

Abstract

A quantitative attribution analysis is performed on the systematic atmospheric temperature biases in a coupled climate system model (flexible global ocean–atmosphere–land system model, spectral version 2) in reference to the European Center for Medium-Range Weather Forecasts, Re-analysis Interim data during 1979–2005. By adopting the coupled surface–atmosphere climate feedback response analysis method, the model temperature biases are related to model biases in representing the radiative processes including water vapor, ozone, clouds and surface albedo, and the non-radiative processes including surface heat fluxes and other dynamic processes. The results show that the temperature biases due to biases in radiative and non-radiative processes tend to compensate one another. In general, the radiative biases tend to dominate in the summer hemisphere, whereas the non-radiative biases dominate in the winter hemisphere. The temperature biases associated with radiative processes due to biases in ozone and water vapor content are the main contributors to the total temperature bias in the tropical and summer stratosphere. The overestimated surface albedo in both polar regions always results in significant cold biases in the atmosphere above in the summer season. Apart from these radiative biases, the zonal-mean patterns of the temperature biases in both boreal winter and summer are largely determined by model biases in non-radiative processes. In particular, the stronger non-radiative process biases in the northern winter hemisphere are responsible for the relatively larger ‘cold pole’ bias in the northern winter polar stratosphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Albers JR, Nathan TR (2012) Pathways for communicating the effects of stratospheric ozone to the polar vortex: role of zonally asymmetric ozone. J Atmos Sci 69(3):785–801. doi:10.1175/JAS-D-11-0126.1

    Article  Google Scholar 

  2. Balmaseda MA, Vidard A, Anderson DLT (2008) The ECMWF ocean analysis system: ORA-S3. Monsoon Weather Rev 136:3018–3034. doi:10.1175/2008MWR2433.1

    Article  Google Scholar 

  3. Bao Q, Wu GX, Liu YM, Yang J, Wang ZZ, Zhou TJ (2010) An introduction to the coupled model FGOALS11-s and its performance in East Asia. Adv Atmos Sci 27(5):1131–1142. doi:10.1007/s00376-010-9177-1

    Article  Google Scholar 

  4. Bao Q et al (2013) The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv Atmos Sci 30(3):561–576. doi:10.1007/s00376-012-2113-9

    Article  Google Scholar 

  5. Berrisford P, Kållberg P, Kobayashi S, Dee D, Uppala S, Simmons AJ, Poli P, Sato H (2011) Atmospheric conservation properties in ERA-Interim. Q J R Meteorol Soc 137:1381–1399. doi:10.1002/qj.864

    Article  Google Scholar 

  6. Brunke MA, Wang Z, Zeng X, Bosilovich M, Shie CL (2011) An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets. J Clim 24:5469–5493. doi:10.1175/2011JCLI4223.1

    Article  Google Scholar 

  7. Cai M, Lu J-H (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: method demonstrations and comparisons. Clim Dyn 32(6):887–900. doi:10.1007/s00382-008-0424-4

    Article  Google Scholar 

  8. Cess RD et al (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general-circulation models. J Geophys Res 95:16601–16615. doi:10.1029/JD095ID10P16601

    Article  Google Scholar 

  9. Charlton AJ, Polvani LM, Perlwitz J, Sassi F, Manzini E, Shibata K, Pawson S, Nielsen JE, Rind D (2007) A new look at stratospheric sudden warmings. Part II: evaluation of numerical model simulations. J Clim 20:470–488. doi:10.1175/JCLI3994.1

    Article  Google Scholar 

  10. Cionni I et al (2011) Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos Chem Phys 11:11267–11292. doi:10.5194/acp-11-11267-2011

    Article  Google Scholar 

  11. Decker M, Brunke MA, Wang Z, Sakaguchi K, Zeng XB, Bosilovich MG (2012) Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J Clim 25(6):1916–1944. doi:10.1175/JCLI-D-11-00004.1

    Article  Google Scholar 

  12. Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/QJ.828

    Article  Google Scholar 

  13. Deng Y, Park T-W, Cai M (2012) Process-based decomposition of the global surface temperature response to El Niño in boreal winter. J Atmos Sci 69(5):1706–1712. doi:10.1175/JAS-D-12-023.1

    Article  Google Scholar 

  14. Deng Y, Park T-W, Cai M (2013) Radiative and dynamical forcing of the surface and atmospheric temperature anomalies associated with the northern annular mode. J Clim 26:5124–5138. doi:10.1175/JCLI-D-12-00431.1

    Article  Google Scholar 

  15. Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q J R Meteorol Soc 122:689–719. doi:10.1002/qj.49712253107

    Article  Google Scholar 

  16. Fu Q, Liou KN (1992) On the correlated K-distribution method for radiative-transfer in nonhomogeneous atmospheres. J Atmos Sci 49(22):2139–2156

    Article  Google Scholar 

  17. Fu Q, Liou KN (1993) Parameterization of the radiative properties of cirrus clouds. J Atmos Sci 50(13):2008–2025

    Article  Google Scholar 

  18. Hartmann DL, Wallace JM, Limpasuvan V, Thompson DW, Holton JR (2000) Can ozone depletion and global warming interact to produce rapid climate change? Proc Natl Acad Sci USA 97:1412–1417. doi:10.1073/pnas.97.4.1412

    Article  Google Scholar 

  19. Kumar BP, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38(7–8):1521–1543. doi:10.1007/s00382-011-1115-0

    Article  Google Scholar 

  20. Liu J, Zhou TJ, Wu C, Guo Z (2011) Water vapor and cloud radiative feedback processes in the ocean-atmosphere coupled model FGOALS_g1. Chin J Atmos Sci 35(3):531–546. doi:10.3878/j.issn.1006-9895.2011.03.13 (in Chinese)

    Google Scholar 

  21. Liu H, Lin P, Yu Y, Zhang X (2012) The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorol Sin 26:318–329. doi:10.1007/s13351-012-0305-y

    Article  Google Scholar 

  22. Lu J-H, Cai M (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: formulation. Clim Dyn 32(6):873–885. doi:10.1007/S00382-008-0425-3

    Article  Google Scholar 

  23. Mohanakumar K (2008) Stratosphere troposphere interaction: an introduction. Springer, Berlin

    Book  Google Scholar 

  24. Palmer TN, Shutts GJ, Swinbank R (1986) Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Q J R Meteorol Soc 112:1001–1039. doi:10.1002/qj.49711247406

    Article  Google Scholar 

  25. Park T-W, Deng Y, Cai M, Jeong JH, Zhou R-J (2014) A dissection of the surface temperature biases in the Community Earth System Model. Clim Dyn. doi:10.1007/s00382-013-2029-9

    Google Scholar 

  26. Pawson S et al (2000) The GCM-Reality intercomparison project for SPARC (GRIPS): scientific issues and initial results. Bull Am Meteorol Soc 81:781–796. doi:10.1175/1520-0477(2000)081<0781:TGIPFS>2.3.CO;2

    Article  Google Scholar 

  27. Randall DA, Wood RA, Bony S et al (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 589–662

  28. Ren R-C, Yang Y (2012) Changes in winter stratospheric circulation in CMIP5 scenarios simulated by the climate system model FGOALS-s2. Adv Atmos Sci 29:1374–1389. doi:10.1007/s00376-012-1184-y

    Article  Google Scholar 

  29. Ren R-C, Wu G-X, Cai M, Yu J-J (2009) Winter season stratospheric circulation in the SAMIL/LASG general circulation model. Adv Atmos Sci 26(3):451–464. doi:10.1007/s00376-009-0451-z

    Article  Google Scholar 

  30. Sassi F, Boville BA, Kinnison D, Garcia RR (2005) The effects of interactive ozone chemistry on simulations of the middle atmosphere. Geophys Res Lett 32:L07811. doi:10.1029/2004GL022131

    Google Scholar 

  31. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  32. Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Plattner GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327(5790):1219–1223. doi:10.1126/science.1182488

    Article  Google Scholar 

  33. Sudo K, Takahashi M, Akimoto H (2003) Future changes in stratosphere–troposphere exchange and their impacts on future tropospheric ozone simulations. Geophys Res Lett 30:2256. doi:10.1029/2003GL018526

    Article  Google Scholar 

  34. Trenberth KE, Guillemot CJ (1995) Evaluation of the global atmospheric moisture budget as seen from analyses. J Clim 8:2255–2272. doi:10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2

    Article  Google Scholar 

  35. Wang A, Zeng X (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res 117:D05102. doi:10.1029/2011JD016553

    Google Scholar 

  36. Wang B, Ding Q, Fu X, Kang I, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi:10.1029/2005GL022734

    Article  Google Scholar 

  37. Waugh DW, Oman L, Newman PA, Stolarski RS, Pawson S, Nielsen JE, Perlwitz J (2009) Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends. Geophys Res Lett 36:L18701. doi:10.1029/2009GL040419

    Article  Google Scholar 

  38. Wu G-X, Liu H, Zhao Y-C, Li W-P (1996) A nine-layer atmospheric general circulation model and its performance. Adv Atmos Sci 13:1–18. doi:10.1007/BF02657024

    Article  Google Scholar 

  39. Yang Y, Ren R-C, Cai M, Rao J (2015) Attributing analysis on the model bias in surface temperature in the climate system model FGOALS-s2 through a process-based decomposition method. Adv Atmos Sci. doi:10.1007/s00376-014-4061-z

    Google Scholar 

  40. Zhang MH et al (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res 110(D15):S02. doi:10.1029/2004JD005021

    Google Scholar 

  41. Zhou T-J, Song F-F, Chen X-L (2013) Historical evolution of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results? Adv Atmos Sci 30:638–657. doi:10.1007/s00376-013-2205-1

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (91437105), a Chinese Academy of Sciences project (XDA11010402) and the China Meteorological Administration Special Public Welfare Research Fund (GYHY201406001). M. Cai is supported in part by research grant from the National Science Foundation (AGS-1354834).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R.-C. Ren or Ming Cai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, RC., Yang, Y., Cai, M. et al. Understanding the systematic air temperature biases in a coupled climate system model through a process-based decomposition method. Clim Dyn 45, 1801–1817 (2015). https://doi.org/10.1007/s00382-014-2435-7

Download citation

Keywords

  • Model air temperature bias
  • Process-based decomposition
  • CFRAM
  • FGOALS-s2