Skip to main content

Ocean change around Greenland under a warming climate

Abstract

The impact of climate warming on the ocean near Greenland is investigated with a high resolution coupled global climate model. The ocean around Greenland exhibits a strong warming in response to a four times increase of present-day atmospheric \(CO_2\) levels. The signal is intensified in the intermediate layer and regionally strongest in the Greenland Sea. The projected changes in temperature are driven by changes affecting the large-scale ocean circulation rather than changes of the local atmospheric heat forcing. The ocean conditions examined here provide a background for the water masses in contact with the outlet glaciers around the Greenland coast. The future warming of the warm subtropical-origin layer could thus lead to enhanced ice sheet melting, although the signal could be mitigated by other effects, including an enhanced stratification of the surface fresh layer. Applying a simple parameterization to estimate the change in melt rate along the Greenland coast, we find that ice sheet melting increases everywhere in response to the change in water mass properties, although the melt rate changes show large variations in space. The largest melting acceleration is found on the east coast between Fram Strait and Denmark Strait, where both the parameterization applied to present-day conditions and observations suggest moderate melting up to now. These model results caution that the Greenland Ice Sheet mass balance should be monitored everywhere and not only where melting occurs at the moment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Beckmann A, Goosse H (2003) A parameterization of ice shelf–ocean interaction for climate models. Ocean Model 5(2):157–170

    Article  Google Scholar 

  2. Boyer T, Levitus S, Garcia H, Locarnini RA, Stephens C, Antonov J (2005) Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a \(0.25^{\circ }\) grid. Int J Climatol 25:931–945

    Article  Google Scholar 

  3. Coachman LK, Barnes CA (1963) The movement of Atlantic Water in the Arctic Ocean. J Arct Instit N Am 16:8–16

    Google Scholar 

  4. Cuny J, Rhines PB, Kwok R (2005) Davis strait volume, freshwater and heat fluxes. Deep Sea Res 1 52:519–542

    Article  Google Scholar 

  5. Curry B, Lee CM, Petrie B (2011) Volume, freshwater, and heat fluxes through Davis Strait, 2004–05. J Phys Oceanogr 41:429–436

    Article  Google Scholar 

  6. Danabasoglu G, Yeager SG, Bailey D, Behrens E, Bentsen M, Bi D, Biastoch A, Böning C, Bozec A, Canuto VM, Cassou C, Chassignet E, Coward AC, Danilov S, Diansky N, Drange H, Farneti R, Fernandez E, Fogli PG, Forget G, Fujii Y, Griffies SM, Gusev A, Heimbach P, Howard A, Jung T, Kelley M, Large WG, Leboissetier A, Lu J, Madec G, Marsland SJ, Masina S, Navarra A, George Nurser AJ, Pirani A, y Mélia DS, Samuels BL, Scheinert M, Sidorenko D, Treguier A-M, Tsujino H, Uotila P, Valcke S, Voldoire A, Wang Q (2014) North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: mean states. Ocean Model 73:76–107

    Article  Google Scholar 

  7. Daniault N, Lherminier P, Mercier H (2011) Circulation and transport at the southeast tip of Greenland. J Phys Oceanogr 41:437–457

    Article  Google Scholar 

  8. Day JJ, Bamber JL, Valdes PJ (2013) The Greenland Ice Sheet’s surface mass balance in a seasonally sea ice-free Arctic. J Geophys Res (Earth Surf) 118:1533–1544

    Article  Google Scholar 

  9. de Steur L, Hansen E, Gerdes R, Karcher M, Fahrbach E, Holfort J (2009) Freshwater fluxes in the East Greenland Current: a decade of observations. Geophys Res Lett 36(23). doi:10.1029/2009GL041278

  10. de Steur L, Steele M, Hansen E, Morison J, Polyakov I, Olsen S, Melling H, McLaughlin F, Kwok R, Smethie W, Schlosser P (2013) Hydrographic changes in the lincoln sea in the arctic ocean with focus on an upper ocean freshwater anomaly between 2007–2010. J Geophys Res (Ocean) 118(9):4699–4715

  11. Drange H, Gerdes R, Gao Y, Karcher M, Kauker F, Bentsen M (2005) Ocean general circulation modelling of the Nordic seas. In: Drange H, Dokken T, Furevik T, Gerdes R, Berger W (eds) The Nordic Seas: an integrated perspective. AGU Monograph, Washington, pp 199–219

    Google Scholar 

  12. Fichefet T, Poncin C, Goosse H, Huybrechts P, Janssens I, Le Treut H (2003) Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys Res Lett 30:1911

  13. Fischer J, Schott FA, Dengler M (2004) Boundary circulation at the exit of the Labrador Sea. J Phys Oceanogr 34:1548

    Article  Google Scholar 

  14. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–160

    Article  Google Scholar 

  15. Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. R Soc Lond Philos Trans Ser A 364:1709–1731

    Article  Google Scholar 

  16. Griffies SM, Gnanadesikan A, Pacanowski RC, Larichev VD, Dukowicz JK, Smith RD (1998) Isoneutral diffusion in a z-coordinate ocean model. J Phys Oceanogr 28:805–830

    Article  Google Scholar 

  17. Hanna E, Navarro FJ, Pattyn F, Domingues CM, Fettweis X, Ivins ER, Nicholls RJ, Ritz C, Smith B, Tulaczyk S et al (2013) Ice-sheet mass balance and climate change. Nature 498(7452):51–59

    Article  Google Scholar 

  18. Hansen B, Osterhus S, Turrell WR, Jonsson S, Valdimarsson H, Hatun H, Olsen SM (2008) The inflow of Atlantic water, heat, and salt to the nordic seas across the Greenland–Scotland ridge. In: Dickson RR, Meincke J, Rhines P (eds) Arctic-subarctic ocean fluxes. Springer, Berlin, pp 15–43

    Chapter  Google Scholar 

  19. Hattermann T, Levermann A (2010) Response of southern ocean circulation to global warming may enhance basal ice shelf melting around Antarctica. Clim Dyn 35:741–756

    Article  Google Scholar 

  20. Hátún H, Sandø AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844

    Article  Google Scholar 

  21. Holland DM, Thomas RH, De Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat Geosci 1:659–664

    Article  Google Scholar 

  22. Howat IM, Smith BE, Joughin I, Scambos TA (2008) Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophys Res Lett 35:17505

    Article  Google Scholar 

  23. Hunke EC, Dukowicz JK (1997) An elastic viscous plastic model for sea ice dynamics. J Phys Oceanogr 27:1849

    Article  Google Scholar 

  24. IPCC (2013) Climate change 2013 —the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, p 1250

  25. Isachsen PE, Lacasce JH, Mauritzen C, Häkkinen S (2003) Wind-driven variability of the large-scale recirculating flow in the Nordic Seas and Arctic Ocean. J Phys Oceanogr 33:2534

    Article  Google Scholar 

  26. Jackson JM, Lique, C, Alkire M, Steele M, Lee CM, Smethie W, Schlosser P (2014) On the waters uptream of Nares Strait, Arctic Ocean, from 1991–2012. Cont Shelf Res 73:83–96

  27. Jahn A, Aksenov Y, de Cuevas BA, de Steur L, Häkkinen S, Hansen E, Herbaut C, Houssais M-N, Karcher M, Kauker F, Lique C, Nguyen A, Pemberton P, Worthen D, Zhang J (2012) Arctic Ocean freshwater: how robust are model simulations? J Geophys Res 117:C00D16. doi:10.1029/2012JC007907

  28. Jahn A, Holland MM (2013) Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. Geophys Res Lett 40:1206–1211

    Article  Google Scholar 

  29. Jenkins A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J Phys Oceanogr 41:2279–2294

    Article  Google Scholar 

  30. Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Rickard GJ, Cusack S, Ingram WJ, Crucifix M, Sexton DMH, Joshi MM, Dong B-W, Spencer H, Hill RSR, Gregory JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The New Hadley Centre Climate Model (HadGEM1): evaluation of coupled simulations. J Clim 19:1327

    Article  Google Scholar 

  31. Johnson HL, Münchow A, Falkner KK, Melling H (2011) Ocean circulation and properties in Petermann Fjord, Greenland. J Geophys Res (Ocean) 116:1003

    Article  Google Scholar 

  32. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758

    Article  Google Scholar 

  33. Koenigk T, Mikolajewicz U, Haak H, Jungclaus J (2007) Arctic freshwater export in the 20th and 21st centuries. J Geophys Res (Biogeosci) 112:4

    Google Scholar 

  34. Lique C, Steele M (2012) Where can we find a seasonal cycle of the Atlantic water temperature within the Arctic Basin? J Geophys Res 117(C16):3026

    Article  Google Scholar 

  35. Lique C, Treguier AM, Blanke B, Grima N (2010) On the origins of water masses exported along both sides of Greenland: a Lagrangian model analysis. J Geophys Res 115(C05019):5019

    Article  Google Scholar 

  36. Marsh R, Desbruyères D, Bamber JL, De Cuevas BA, Coward AC, Aksenov Y (2010) Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Sci 6:749–760

    Article  Google Scholar 

  37. McCartney MS, Talley LD (1982) The subpolar mode water of the North Atlantic Ocean. J Phys Oceanogr 12:1169–1188

    Article  Google Scholar 

  38. McDougall T, Barker P (2011) Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. CSIRO Marine and Atmospheric Research Hobart, Tas. url http://www.TEOS-10.org

  39. Moon T, Joughin I (2008) Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. J Geophys Res (Earth Surf) 113:2022

    Article  Google Scholar 

  40. Murray T, Scharrer K, James TD, Dye SR, Hanna E, Booth AD, Selmes N, Luckman A, Hughes ALC, Cook S, Huybrechts P (2010) Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes. J Geophys Res (Earth Surf) 115:3026

    Article  Google Scholar 

  41. Myers PG, Kulan N, Ribergaard MH (2007) Irminger water variability in the West Greenland Current. Geophys Res Lett 34:17601

    Article  Google Scholar 

  42. Plancherel Y (2014) Hydrographic biases in global coupled climate models and their relation to the meridional overturning circulation. Clim Dyn 1–44. doi:10.1007/s00382-014-2263-9

  43. Rattan S, Myers PG, Treguier A-M, Theetten S, Biastoch A, Böning C (2010) Towards an understanding of Labrador Sea salinity drift in eddy-permitting simulations. Ocean Model 35:77–88

    Article  Google Scholar 

  44. Reeh N, Højmark Thomsen H, Higgins AK, Weidick A (2001) Sea ice and the stability of north and northeast Greenland floating glaciers. Ann Glaciol 33:474–480

    Article  Google Scholar 

  45. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  46. Rignot E, Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science 311:986–990

    Article  Google Scholar 

  47. Rignot E, Koppes M, Velicogna I (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nat Geosci 3:187–191

    Article  Google Scholar 

  48. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:5503

    Article  Google Scholar 

  49. Roberts M, Marshall D (1998) Do we require adiabatic dissipation schemes in eddy-resolving ocean models ? J Phys Oceanogr 28:2050–2063

    Article  Google Scholar 

  50. Sarafanov A, Falina A, Sokov A, Demidov A (2008) Intense warming and salinification of intermediate waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid-2000s. J Geophys Res (Ocean) 113(C12):12022

    Article  Google Scholar 

  51. Schlichtholz P, Houssais MN (1999) An inverse modelling study in Fram Strait. Part II: water mass distribution and transports. Deep Sea Res II 46:1137–1168

    Article  Google Scholar 

  52. Schneider B, Latif M, Schmittner A (2007) Evaluation of different methods to assess model projections of the future evolution of the Atlantic meridional overturning circulation. J Clim 20:2121

    Article  Google Scholar 

  53. Sciascia R, Straneo F, Cenedese C, Heimbach P (2013) Seasonal variability of submarine melt rate and circulation in an East Greenland Fjord. J Geophys Res Ocean 118(5):2492–2506

    Article  Google Scholar 

  54. Seale A, Christoffersen P, Mugford RI, O’Leary M (2011) Ocean forcing of the Greenland Ice Sheet: calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J Geophys Res (Earth Surf) 116:3013

    Article  Google Scholar 

  55. Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory ME, Donners J, Clark DB, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) U.K. HiGEM: the new U.K. high-resolution global environment model–model description and basic evaluation. J Clim 22:1861

    Article  Google Scholar 

  56. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high quality Arctic Ocean. J Clim 14:2079–2087

    Article  Google Scholar 

  57. Stendel M, Christensen JH, Petersen D (2008) Arctic climate and climate change with a focus on Greenland. In: Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M (eds) High-Arctic ecosystem dynamics in a changing climate. Vol. 40 of advances in ecological research. Academic Press, London, pp 13–43

    Chapter  Google Scholar 

  58. Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial Fjord in East Greenland. Nat Geosci 3(3):182–186

    Article  Google Scholar 

  59. Straneo F, Heimbach P (2013) North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504:36–43

    Article  Google Scholar 

  60. Straneo F, Sergienko O, Heimbach P (2012a) Understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing: a white paper by the U.S. CLIVAR working group on Greenland Ice Sheet–Ocean Interactions (GRISO). U.S. CLIVAR Office, Washington, DC 20006, pp 22

  61. Straneo F, Sutherland DA, Holland D, Gladish C, Hamilton GS, Johnson HL, Rignot E, Xu Y, Koppes M (2012b) Characteristics of ocean waters reaching greenland’s glaciers. Ann Glaciol 53(60):202

    Article  Google Scholar 

  62. Sutherland DA, Straneo F, Stenson GB, Davidson FJM, Hammill MO, Rosing-Asvid A (2013) Atlantic water variability on the SE Greenland continental shelf and its relationship to SST and bathymetry. J Geophys Res (Ocean) 118:847–855

    Article  Google Scholar 

  63. Swingedouw D, Rodehacke CB, Behrens E, Menary M, Olsen SM, Gao Y, Mikolajewicz U, Mignot J, Biastoch A (2013) Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim Dyn 41:695–720

    Article  Google Scholar 

  64. Thierry V, de Boisséson E, Mercier H (2008) Interannual variability of the subpolar mode water properties over the Reykjanes Ridge during 1990–2006. J Geophys Res (Ocean) 113:4016

    Article  Google Scholar 

  65. Thomas MD, de Boer AM, Stevens DP, Johnson HL (2012) Upper ocean manifestations of a reducing meridional overturning circulation. Geophys Res Lett 39:16609

    Article  Google Scholar 

  66. Treguier AM, Theetten S, Chassignet EP, Penduff T, Smith R, Talley L, Beismann JO, Boning C (2005) The North Atlantic subpolar gyre in four high-resolution models. J Phys Oceanogr 35:757–774

    Article  Google Scholar 

  67. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36:19503

    Article  Google Scholar 

  68. Woodgate RA, Fahrbach E, Rohardt G (1999) Structure and transports of the East Greenland Current at 75 N from moored current meters. J Geophys Res 104:18059–18072

    Article  Google Scholar 

  69. Yin J, Overpeck JT, Griffies SM, Hu A, Russell JL, Stouffer RJ (2011) Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica. Nat Geosci 4(8):524–528

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the UK Natural Environment Research Council (NERC). Yves Plancherel acknowledges funding from the UK Geotraces project. The coupled climate model was developed from the Met Office Hadley Centre Model by the UK High-Resolution Modelling (HiGEM) Project and the UK Japan Climate Collaboration (UJCC). HiGEM is supported by a NERC High Resolution Climate Modelling Grant (R8/H12/123). UJCC was supported by the Foreign and Commonwealth Office Global Opportunities Fund, and jointly funded by NERC and the DECC/Defra Met Office Hadley Centre Climate Program (GA01101). The model integrations were performed using the Japanese Earth Simulator supercomputer, supported by JAMSTEC. The work of Pier Luigi Vidale and Malcolm Roberts in leading the effort in Japan is particularly valued. We are also grateful to Prof David Stevens for making the model data available.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Camille Lique.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lique, C., Johnson, H.L., Plancherel, Y. et al. Ocean change around Greenland under a warming climate. Clim Dyn 45, 1235–1252 (2015). https://doi.org/10.1007/s00382-014-2373-4

Download citation

Keywords

  • Ocean–ice sheet interaction
  • Greenland Ice Sheet
  • North Atlantic
  • Climate change