Skip to main content

Advertisement

Log in

Role of sea surface temperature, Arctic sea ice and Siberian snow in forcing the atmospheric circulation in winter of 2012–2013

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

During the 2012–2013 winter, the negative phase of the North Atlantic Oscillation (NAO) predominated, resulting in a cold winter over Europe and northern Asia punctuated by episodes of frigid weather. This climate anomaly is part of a recent trend towards negative values of the NAO index that has occurred over recent winters. The negative trend of the NAO may be related to atmospheric internal variability but it may also be partly forced by slowly varying components of the climate system. In the present study, we investigate the influence of surface conditions on the atmospheric circulation for the 2012–2013 winter using an atmospheric global climate model. In particular, the role of low Arctic sea ice concentration, warm tropical/North Atlantic sea surface temperature and positive Siberian snow cover anomalies are isolated by prescribing them in a set of different numerical experiments. Our simulations suggest that each of these surface forcings favored a negative NAO during the 2012–2013 winter. In our model, the combined NAO response to tropical/North Atlantic SST, Arctic sea ice and Siberian snow anomalies accounts for about 30 % of the observed NAO anomaly. Different physical mechanisms are explored to elucidate the atmospheric responses and are shown to involve both tropical and extratropical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abatzoglou JT, Magnusdottir G (2006) Opposing effects of reflective and non-reflective planetary wave breaking on the NAO. J Atmos Sci 63:3448–3457

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The Version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Alexander M, Bhatt U, Walsh J, Timlin M, Miller J, Scott J (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581

    Article  Google Scholar 

  • Baldwin MP, Thompson DWJ (2009) A critical comparison of stratosphere-troposphere coupling indices. Q J R Meteorol Soc 135:1661–1672

    Article  Google Scholar 

  • Ballinger TJ, Allen MJ, Rohli RV (2014) Spatiotemporal analysis of the January Northern Hemisphere circumpolar polar vortex over the contiguous United States. Geophys Res Lett. doi:10.1002/2014GL060285

    Google Scholar 

  • Barnes EA (2013) Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett 40:4728–4733. doi:10.1002/grl.50880

    Article  Google Scholar 

  • Bjerknes J (1964) Atlantic air-sea interaction. Adv Geophys 10:1–82

    Article  Google Scholar 

  • Brönnimann S (2007) Impact of El Niño-Southern Oscillation on European climate. Rev Geophys 45:RG3003. doi:10.1029/2006RG000199

    Article  Google Scholar 

  • Cassou C (2008) Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic oscillation. Nature 455(7212):523–527. doi:10.1038/nature07286

    Article  Google Scholar 

  • Cellitti MP, Walsh JE, Rauber RM, Portis DH (2006) Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J Geophys Res 111:D02114. doi:10.1029/2005JD006273

    Google Scholar 

  • Cohen J, Barlow M, Kushner PJ, Saito K (2007) Stratosphere-troposphere coupling and links with Eurasian land surface variability. J Clim 20:5335–5343

    Article  Google Scholar 

  • Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26:2969–2972

    Article  Google Scholar 

  • Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20:4751–4767

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA (2010) Twentieth Century Tropical Sea Surface Temperature Trends Revisited. Geophys Res Lett 37:L10701. doi:10.1029/2010GL043321

    Article  Google Scholar 

  • Douville H (2009) Stratospheric polar vortex influence on Northern Hemisphere winter climate variability. Geophys Res Lett 36:L18703. doi:10.1029/2009GL039334

    Article  Google Scholar 

  • Drevillon M, Cassou C, Terray L (2003) Model study of the North Atlantic region atmospheric response to autumn tropical atlantic sea-surface-temperature anomalies. Quart J Roy Meteorol Soc 129:2591–2611. doi:10.1256/qj.02.17

    Article  Google Scholar 

  • Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteor 18:1016–1022. doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2

    Article  Google Scholar 

  • Eden C, Jung T (2001) North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14:676–691

    Article  Google Scholar 

  • Fischer EM, Luterbacher J, Zorita E, Tett SFB, Cast C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34:L05707. doi:10.1029/2006GL027992

    Google Scholar 

  • Fletcher CG, Hardiman SC, Kushner PJ, Cohen J (2009) The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J Clim 22:1208–1222

    Article  Google Scholar 

  • Francis J, Vavrus S (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801. doi:10.1029/2012GL051000

    Article  Google Scholar 

  • Francis J, Chen W, Leathers D, Miller J, Veron D (2009) Winter Northern Hemisphere weather patterns remember summer Arctic sea ice extent. Geophys Res Lett 36:L07503. doi:10.1029/2009GL037274

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462. doi:10.1002/qj.49710644905

    Article  Google Scholar 

  • Gray LJ, Scaife AA, Mitchell DM, Osprey S, Ineson S, Hardiman S, Butchart N, Knight J, Sutton R, Kodera K (2013) A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J Geophys Res Atmos 118:13405–13420. doi:10.1002/2013JD020062

    Article  Google Scholar 

  • Guirguis K, Gershunov A, Schwartz R, Bennett S (2011) Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys Res Lett 38:L17701. doi:10.1029/2011GL048762

    Article  Google Scholar 

  • Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP (2013) North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 499:464–467

    Article  Google Scholar 

  • Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi:10.1029/2008GL037079

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Wea Rev 109:813–829

    Article  Google Scholar 

  • Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40:1595–1612

    Article  Google Scholar 

  • Hurrell J, van Loon WH (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326

    Article  Google Scholar 

  • Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757

    Article  Google Scholar 

  • Jung T, Vitart F, Ferranti L, Morcrette J-J (2011) Origin and predictability of the extreme negative NAO winter of 2009/10. Geophys Res Lett 38:L07701. doi:10.1029/2011GL046786

    Article  Google Scholar 

  • Kalnay et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470

    Article  Google Scholar 

  • Kang D, Lee M-I, Im J, Kim D, Kim H-M, Kang H-S, Schubert SD, Arribas A, MacLachlan C (2014) Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophys Res Lett 41:3577. doi:10.1002/2014GL060011

    Article  Google Scholar 

  • Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dyn. doi:10.1007/s00382-013-1712-1

    Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1986

    Article  Google Scholar 

  • Kitoh A, Arakawa O (1999) On overestimation of tropical precipitation by an atmospheric GCM with prescribed SST. Geophys Res Lett 26:2965–2968

    Article  Google Scholar 

  • Kumar A et al (2010) Contribution of sea ice loss to Arctic amplification. Geophys Res Lett 37:L21701. doi:10.1029/010GL045022

    Google Scholar 

  • Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM Response to Extratropical SST Anomalies: synthesis and Evaluation. J Clim 15:2233–2256

    Article  Google Scholar 

  • Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. PNAS. doi:10.1073/pnas.1118734109

    Google Scholar 

  • Losada T, Rodriguez-Fonseca B, Mechoso CR, Ma H-Y (2008) Impact of SST anomalies on the North Atlantic atmospheric circulation : a case study for the northern winter 1995–1996. Clim Dyn 29:807–819

    Article  Google Scholar 

  • Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3, Part I: main features and storm-track characteristics of the response. J Clim 17:857–876

    Article  Google Scholar 

  • Maidens A, Arribas A, Scaife AA, MacLachlan C, Peterson D, Knight J (2013) The influence of surface forcings on prediction of the north atlantic oscillation regime of winter 2010/11. Mon Wea Rev 141:3801–3813. doi:10.1175/MWR-D-13-00033.1

    Article  Google Scholar 

  • Msadek R, Frankignoul C, Li L (2011) Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study. Clim Dyn 36:1255–1276

    Article  Google Scholar 

  • Neale RB et al (2011) Description of the NCAR Community Atmosphere Model (CAM5). National Center for Atmospheric Research Tech. Rep. NCAR/TN-486+STR, p 268

  • Okumura Y, Xie SP, Numaguti A, Tanimoto Y (2001) Tropical Atlantic air-sea interaction and its influence on the NAO. Geophys Res Lett 28:1507–1510

    Article  Google Scholar 

  • Omrani NE, Keenlyside NS, Bader J, Manzini E (2014) Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Clim Dyn 42:649–663

    Article  Google Scholar 

  • Peings Y, Magnusdottir G (2014a) Response of the wintertime northern hemisphere atmospheric circulation to current and projected Arctic Sea ice decline: a numerical study with CAM5. J. Climate 27:244–264

    Article  Google Scholar 

  • Peings Y, Magnusdottir G (2014b) Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Environ Res Lett 9(3):034018

    Article  Google Scholar 

  • Peings Y, Saint-Martin D, Douville H (2012) A numerical sensitivity study of the Siberian snow influence on the northern annular mode. J Clim 25:592–607

    Article  Google Scholar 

  • Peng S, Robinson WA, Li S (2002) North Atlantic SST Forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett 29(8):117. doi:10.1029/2001GL014043

    Article  Google Scholar 

  • Peng S, Robinson WA, Li S, Hoerling MP (2005) Tropical Atlantic SST forcing of coupled north atlantic seasonal responses. J Clim 18(3):480–496. doi:10.1175/JCLI-3270.1

    Article  Google Scholar 

  • Peterson TC, Hoerling MP, Stott PA, Herring S (2013) Explaining extreme events of 2012 from a climate perspective. Bull Am Meteor Soc 94(9):1–74

    Article  Google Scholar 

  • Petoukhov V, Semenov V (2010) A link between reduced Barent- Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111. doi:10.1029/2009JD013568

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Scaife AA et al (2014) Skillful long- range prediction of European and North American winters. Geophys Res Lett 41:2514–2519. doi:10.1002/2014GL059637

    Article  Google Scholar 

  • Screen JA, Simmonds I (2013) Exploring links between Arctic amplification and mid-latitude weather. Geophys Res Lett 40:959. doi:10.1002/grl.50174

    Article  Google Scholar 

  • Screen JA, Simmonds I, Deser C, Tomas R (2013) The atmospheric response to three decades of observed Arctic sea ice loss. J Clim. doi:10.1175/JCLI-D-12-00063.1

    Google Scholar 

  • Semmler T, McGrath R, Wang S (2012) The impact of Arctic sea ice on the Arctic energy budget and on the climate of the Northern mid-latitudes. Clim Dyn (EC-Earth Special Issue). doi: 10.1007/s00382-012-1353-9

  • Serreze M, Barrett A, Stroeve J (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19

    Article  Google Scholar 

  • Slingo J (2013) Why was the start to spring 2013 so cold? Metoffice, http://www.metoffice.gov.uk/media/pdf/i/2/March2013.pdf

  • Tang Q, Zhang X, Yang X, Francis JA (2013) Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett 8:014036

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Toniazzo T, Scaife AA (2006) The influence of ENSO on winter North Atlantic climate. Geophys Res Lett 33:L24704. doi:10.1029/2006GL027881

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Branstator G, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Change. doi:10.1038/nclimate2341

    Google Scholar 

  • Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Wea Rev 118:2056–2081. doi:10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2

    Article  Google Scholar 

  • Vihma T (2014) Effects of Arctic Sea ice decline on weather and climate: a review. Surv Geophys. doi:10.1007/s10712-014-9284-0

    Google Scholar 

  • Wallace JM, Held IM, Thompson DWJ, Trenberth KE, Walsh JE (2014) Global warming and winter weather. Science 343(6172):729–730. doi:10.1126/science.343.6172.729

    Article  Google Scholar 

  • Waugh DW, Polvani LM (2010) Stratospheric polar vortices. In: LM Polvani, AH Sobel, DW Waugh (eds) The stratosphere: dynamics, transport and chemistry. American Geophysical Union, Washington, DC

  • Xie S-P, Carton JA (2004) Tropical atlantic variability: patterns, mechanisms, and impacts. In: Wang C, Xie SP, Carton JA (eds) Earth’s climate. American Geophysical Union, Washington, DC. doi:10.1029/147GM07

Download references

Acknowledgments

We thank two anonymous reviewers for comments on the manuscript. This work was supported by NSF Grant AGS-1206120. High-performance computing was performed at NCAR’s CISL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Peings.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peings, Y., Magnusdottir, G. Role of sea surface temperature, Arctic sea ice and Siberian snow in forcing the atmospheric circulation in winter of 2012–2013. Clim Dyn 45, 1181–1206 (2015). https://doi.org/10.1007/s00382-014-2368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2368-1

Keywords

Navigation