Advertisement

Climate Dynamics

, Volume 45, Issue 5–6, pp 1181–1206 | Cite as

Role of sea surface temperature, Arctic sea ice and Siberian snow in forcing the atmospheric circulation in winter of 2012–2013

  • Yannick PeingsEmail author
  • Gudrun Magnusdottir
Article

Abstract

During the 2012–2013 winter, the negative phase of the North Atlantic Oscillation (NAO) predominated, resulting in a cold winter over Europe and northern Asia punctuated by episodes of frigid weather. This climate anomaly is part of a recent trend towards negative values of the NAO index that has occurred over recent winters. The negative trend of the NAO may be related to atmospheric internal variability but it may also be partly forced by slowly varying components of the climate system. In the present study, we investigate the influence of surface conditions on the atmospheric circulation for the 2012–2013 winter using an atmospheric global climate model. In particular, the role of low Arctic sea ice concentration, warm tropical/North Atlantic sea surface temperature and positive Siberian snow cover anomalies are isolated by prescribing them in a set of different numerical experiments. Our simulations suggest that each of these surface forcings favored a negative NAO during the 2012–2013 winter. In our model, the combined NAO response to tropical/North Atlantic SST, Arctic sea ice and Siberian snow anomalies accounts for about 30 % of the observed NAO anomaly. Different physical mechanisms are explored to elucidate the atmospheric responses and are shown to involve both tropical and extratropical processes.

Keywords

Climate variability North Atlantic Oscillation Ocean-atmosphere interactions Arctic sea ice Siberian snow 2012–2013 winter 

Notes

Acknowledgments

We thank two anonymous reviewers for comments on the manuscript. This work was supported by NSF Grant AGS-1206120. High-performance computing was performed at NCAR’s CISL.

Supplementary material

382_2014_2368_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1582 kb)

References

  1. Abatzoglou JT, Magnusdottir G (2006) Opposing effects of reflective and non-reflective planetary wave breaking on the NAO. J Atmos Sci 63:3448–3457Google Scholar
  2. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The Version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). J Hydrometeor 4:1147–1167CrossRefGoogle Scholar
  3. Alexander M, Bhatt U, Walsh J, Timlin M, Miller J, Scott J (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905CrossRefGoogle Scholar
  4. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581CrossRefGoogle Scholar
  5. Baldwin MP, Thompson DWJ (2009) A critical comparison of stratosphere-troposphere coupling indices. Q J R Meteorol Soc 135:1661–1672CrossRefGoogle Scholar
  6. Ballinger TJ, Allen MJ, Rohli RV (2014) Spatiotemporal analysis of the January Northern Hemisphere circumpolar polar vortex over the contiguous United States. Geophys Res Lett. doi: 10.1002/2014GL060285 Google Scholar
  7. Barnes EA (2013) Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett 40:4728–4733. doi: 10.1002/grl.50880 CrossRefGoogle Scholar
  8. Bjerknes J (1964) Atlantic air-sea interaction. Adv Geophys 10:1–82CrossRefGoogle Scholar
  9. Brönnimann S (2007) Impact of El Niño-Southern Oscillation on European climate. Rev Geophys 45:RG3003. doi: 10.1029/2006RG000199 CrossRefGoogle Scholar
  10. Cassou C (2008) Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic oscillation. Nature 455(7212):523–527. doi: 10.1038/nature07286 CrossRefGoogle Scholar
  11. Cellitti MP, Walsh JE, Rauber RM, Portis DH (2006) Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J Geophys Res 111:D02114. doi: 10.1029/2005JD006273 Google Scholar
  12. Cohen J, Barlow M, Kushner PJ, Saito K (2007) Stratosphere-troposphere coupling and links with Eurasian land surface variability. J Clim 20:5335–5343CrossRefGoogle Scholar
  13. Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007CrossRefGoogle Scholar
  14. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  15. Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26:2969–2972CrossRefGoogle Scholar
  16. Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20:4751–4767CrossRefGoogle Scholar
  17. Deser C, Phillips AS, Alexander MA (2010) Twentieth Century Tropical Sea Surface Temperature Trends Revisited. Geophys Res Lett 37:L10701. doi: 10.1029/2010GL043321 CrossRefGoogle Scholar
  18. Douville H (2009) Stratospheric polar vortex influence on Northern Hemisphere winter climate variability. Geophys Res Lett 36:L18703. doi: 10.1029/2009GL039334 CrossRefGoogle Scholar
  19. Drevillon M, Cassou C, Terray L (2003) Model study of the North Atlantic region atmospheric response to autumn tropical atlantic sea-surface-temperature anomalies. Quart J Roy Meteorol Soc 129:2591–2611. doi: 10.1256/qj.02.17 CrossRefGoogle Scholar
  20. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteor 18:1016–1022. doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 CrossRefGoogle Scholar
  21. Eden C, Jung T (2001) North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14:676–691CrossRefGoogle Scholar
  22. Fischer EM, Luterbacher J, Zorita E, Tett SFB, Cast C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34:L05707. doi: 10.1029/2006GL027992 Google Scholar
  23. Fletcher CG, Hardiman SC, Kushner PJ, Cohen J (2009) The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J Clim 22:1208–1222CrossRefGoogle Scholar
  24. Francis J, Vavrus S (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801. doi: 10.1029/2012GL051000 CrossRefGoogle Scholar
  25. Francis J, Chen W, Leathers D, Miller J, Veron D (2009) Winter Northern Hemisphere weather patterns remember summer Arctic sea ice extent. Geophys Res Lett 36:L07503. doi: 10.1029/2009GL037274 CrossRefGoogle Scholar
  26. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462. doi: 10.1002/qj.49710644905 CrossRefGoogle Scholar
  27. Gray LJ, Scaife AA, Mitchell DM, Osprey S, Ineson S, Hardiman S, Butchart N, Knight J, Sutton R, Kodera K (2013) A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J Geophys Res Atmos 118:13405–13420. doi: 10.1002/2013JD020062 CrossRefGoogle Scholar
  28. Guirguis K, Gershunov A, Schwartz R, Bennett S (2011) Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys Res Lett 38:L17701. doi: 10.1029/2011GL048762 CrossRefGoogle Scholar
  29. Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP (2013) North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 499:464–467CrossRefGoogle Scholar
  30. Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi: 10.1029/2008GL037079 CrossRefGoogle Scholar
  31. Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Wea Rev 109:813–829CrossRefGoogle Scholar
  32. Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40:1595–1612CrossRefGoogle Scholar
  33. Hurrell J, van Loon WH (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326CrossRefGoogle Scholar
  34. Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757CrossRefGoogle Scholar
  35. Jung T, Vitart F, Ferranti L, Morcrette J-J (2011) Origin and predictability of the extreme negative NAO winter of 2009/10. Geophys Res Lett 38:L07701. doi: 10.1029/2011GL046786 CrossRefGoogle Scholar
  36. Kalnay et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470CrossRefGoogle Scholar
  37. Kang D, Lee M-I, Im J, Kim D, Kim H-M, Kang H-S, Schubert SD, Arribas A, MacLachlan C (2014) Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophys Res Lett 41:3577. doi: 10.1002/2014GL060011 CrossRefGoogle Scholar
  38. Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dyn. doi: 10.1007/s00382-013-1712-1 Google Scholar
  39. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1986CrossRefGoogle Scholar
  40. Kitoh A, Arakawa O (1999) On overestimation of tropical precipitation by an atmospheric GCM with prescribed SST. Geophys Res Lett 26:2965–2968CrossRefGoogle Scholar
  41. Kumar A et al (2010) Contribution of sea ice loss to Arctic amplification. Geophys Res Lett 37:L21701. doi: 10.1029/010GL045022 Google Scholar
  42. Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM Response to Extratropical SST Anomalies: synthesis and Evaluation. J Clim 15:2233–2256CrossRefGoogle Scholar
  43. Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. PNAS. doi: 10.1073/pnas.1118734109 Google Scholar
  44. Losada T, Rodriguez-Fonseca B, Mechoso CR, Ma H-Y (2008) Impact of SST anomalies on the North Atlantic atmospheric circulation : a case study for the northern winter 1995–1996. Clim Dyn 29:807–819CrossRefGoogle Scholar
  45. Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3, Part I: main features and storm-track characteristics of the response. J Clim 17:857–876CrossRefGoogle Scholar
  46. Maidens A, Arribas A, Scaife AA, MacLachlan C, Peterson D, Knight J (2013) The influence of surface forcings on prediction of the north atlantic oscillation regime of winter 2010/11. Mon Wea Rev 141:3801–3813. doi: 10.1175/MWR-D-13-00033.1 CrossRefGoogle Scholar
  47. Msadek R, Frankignoul C, Li L (2011) Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study. Clim Dyn 36:1255–1276CrossRefGoogle Scholar
  48. Neale RB et al (2011) Description of the NCAR Community Atmosphere Model (CAM5). National Center for Atmospheric Research Tech. Rep. NCAR/TN-486+STR, p 268Google Scholar
  49. Okumura Y, Xie SP, Numaguti A, Tanimoto Y (2001) Tropical Atlantic air-sea interaction and its influence on the NAO. Geophys Res Lett 28:1507–1510CrossRefGoogle Scholar
  50. Omrani NE, Keenlyside NS, Bader J, Manzini E (2014) Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Clim Dyn 42:649–663CrossRefGoogle Scholar
  51. Peings Y, Magnusdottir G (2014a) Response of the wintertime northern hemisphere atmospheric circulation to current and projected Arctic Sea ice decline: a numerical study with CAM5. J. Climate 27:244–264CrossRefGoogle Scholar
  52. Peings Y, Magnusdottir G (2014b) Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Environ Res Lett 9(3):034018CrossRefGoogle Scholar
  53. Peings Y, Saint-Martin D, Douville H (2012) A numerical sensitivity study of the Siberian snow influence on the northern annular mode. J Clim 25:592–607CrossRefGoogle Scholar
  54. Peng S, Robinson WA, Li S (2002) North Atlantic SST Forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett 29(8):117. doi: 10.1029/2001GL014043 CrossRefGoogle Scholar
  55. Peng S, Robinson WA, Li S, Hoerling MP (2005) Tropical Atlantic SST forcing of coupled north atlantic seasonal responses. J Clim 18(3):480–496. doi: 10.1175/JCLI-3270.1 CrossRefGoogle Scholar
  56. Peterson TC, Hoerling MP, Stott PA, Herring S (2013) Explaining extreme events of 2012 from a climate perspective. Bull Am Meteor Soc 94(9):1–74CrossRefGoogle Scholar
  57. Petoukhov V, Semenov V (2010) A link between reduced Barent- Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111. doi: 10.1029/2009JD013568 CrossRefGoogle Scholar
  58. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  59. Scaife AA et al (2014) Skillful long- range prediction of European and North American winters. Geophys Res Lett 41:2514–2519. doi: 10.1002/2014GL059637 CrossRefGoogle Scholar
  60. Screen JA, Simmonds I (2013) Exploring links between Arctic amplification and mid-latitude weather. Geophys Res Lett 40:959. doi: 10.1002/grl.50174 CrossRefGoogle Scholar
  61. Screen JA, Simmonds I, Deser C, Tomas R (2013) The atmospheric response to three decades of observed Arctic sea ice loss. J Clim. doi: 10.1175/JCLI-D-12-00063.1 Google Scholar
  62. Semmler T, McGrath R, Wang S (2012) The impact of Arctic sea ice on the Arctic energy budget and on the climate of the Northern mid-latitudes. Clim Dyn (EC-Earth Special Issue). doi:  10.1007/s00382-012-1353-9
  63. Serreze M, Barrett A, Stroeve J (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19CrossRefGoogle Scholar
  64. Slingo J (2013) Why was the start to spring 2013 so cold? Metoffice, http://www.metoffice.gov.uk/media/pdf/i/2/March2013.pdf
  65. Tang Q, Zhang X, Yang X, Francis JA (2013) Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett 8:014036CrossRefGoogle Scholar
  66. Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  67. Toniazzo T, Scaife AA (2006) The influence of ENSO on winter North Atlantic climate. Geophys Res Lett 33:L24704. doi: 10.1029/2006GL027881 CrossRefGoogle Scholar
  68. Trenberth KE, Fasullo JT, Branstator G, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Change. doi: 10.1038/nclimate2341 Google Scholar
  69. Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Wea Rev 118:2056–2081. doi: 10.1175/1520-0493(1990)118<2056:MWROTN>2.0.CO;2 CrossRefGoogle Scholar
  70. Vihma T (2014) Effects of Arctic Sea ice decline on weather and climate: a review. Surv Geophys. doi: 10.1007/s10712-014-9284-0 Google Scholar
  71. Wallace JM, Held IM, Thompson DWJ, Trenberth KE, Walsh JE (2014) Global warming and winter weather. Science 343(6172):729–730. doi: 10.1126/science.343.6172.729 CrossRefGoogle Scholar
  72. Waugh DW, Polvani LM (2010) Stratospheric polar vortices. In: LM Polvani, AH Sobel, DW Waugh (eds) The stratosphere: dynamics, transport and chemistry. American Geophysical Union, Washington, DCGoogle Scholar
  73. Xie S-P, Carton JA (2004) Tropical atlantic variability: patterns, mechanisms, and impacts. In: Wang C, Xie SP, Carton JA (eds) Earth’s climate. American Geophysical Union, Washington, DC. doi: 10.1029/147GM07

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Earth System ScienceUniversity of California, IrvineIrvineUSA

Personalised recommendations