Skip to main content

Advertisement

Log in

Precipitation in the Karakoram-Himalaya: a CMIP5 view

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This work analyzes the properties of precipitation in the Hindu-Kush Karakoram Himalaya region as simulated by thirty-two state-of-the-art global climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5). We separately consider the Hindu-Kush Karakoram (HKK) in the west and the Himalaya in the east. These two regions are characterized by different precipitation climatologies, which are associated with different circulation patterns. Historical model simulations are compared with the Climate Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC) precipitation data in the period 1901–2005. Future precipitation is analyzed for the two representative concentration pathways (RCP) RCP 4.5 and RCP 8.5 scenarios. We find that the multi-model ensemble mean and most individual models exhibit a wet bias with respect to CRU and GPCC observations in both regions and for all seasons. The models differ greatly in the seasonal climatology of precipitation which they reproduce in the HKK. The CMIP5 models predict wetter future conditions in the Himalaya in summer, with a gradual precipitation increase throughout the 21st century. Wetter summer future conditions are also predicted by most models in the RCP 8.5 scenario for the HKK, while on average no significant change can be detected in winter precipitation for both regions. In general, no single model (or group of models) emerges as that providing the best results for all the statistics considered, and the large spread in the behavior of individual models suggests to consider multi-model ensemble means with extreme care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhtar M, Ahmad N, Booij M (2008) The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J Hydrol 355:148–163. doi:10.1016/j.jhydrol.2008.03.015

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J Atmos Sci 31:674–701. doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2

    Article  Google Scholar 

  • Arakawa A (2004) The cumulus parameterization problem: past, present and future. J Clim 17:2493–2525. doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2

    Article  Google Scholar 

  • Archer DR, Fowler HJ (2004) Spatial and temporal variations in precipitation in the upper Indus basin, global teleconnections and hydrological implications. Hydrol Earth Syst Sci 8:47–61. doi:10.5194/hess-8-47-2004

    Article  Google Scholar 

  • Archer DR, Fowler HJ (2008) Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. J Hydrol 361:10–23. doi:10.1016/j.jhydrol.2008.07.017

    Article  Google Scholar 

  • Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38:L05805. doi:10.1029/2010GL046270

    Google Scholar 

  • Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst Sci Data 5:71–99. doi:10.5194/essd-5-71-2013

    Article  Google Scholar 

  • Bellouin N, Rae J, Jones A, Johnson C, Haywood J, Boucher O (2011) Aerosol forcing in the climate model intercomparison project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res 116:D20206. doi:10.1029/2011JD016074

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2013) The Norwegian earth system model, NorESM1-M-Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720. doi:10.5194/gmd-6-687-2013

    Article  Google Scholar 

  • Betts AK (1986) A new convective adjustment scheme. Part I: observational and theoretical basis. Q J R Meteorol Soc 112:677–691. doi:10.1002/qj.49711247307

    Google Scholar 

  • Bi D, Dix M, Marsland S, O’Farrell S, Rashid H, Uotila P, Hirst A, Kowalczyk E, Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin C, Sun Z, Vohralik P, Watterson I, Zhou X, Fiedler R, Collier M, Ma Y, Noonan J, Stevens L, Uhe P, Zhu H, Griffies S, Hill R, Harris C, Puri K (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64

    Google Scholar 

  • Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem Cycle 21:GB2018. doi:10.1029/2006GB002840

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Held R, Kolli K, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Climate change 2007. The physical science basis. Contribution of WGI to the IPCC AR4. Cambridge University Press

  • Ciccarelli N, von Hardenberg J, Provenzale A, Ronchi C, Vargiu A, Pelosini R (2008) Climate variability in north-western Italy during the second half of the 20th century. Global Planet Change 63:185–195. doi:10.1016/j.gloplacha.2008.03.006

    Article  Google Scholar 

  • CRU (University of East Anglia Climatic Research Unit): Phil Jones, Ian Harris: Time-Series (TS) Version 3.21 of High Resolution Gridded Data of Month-by-month Variation in Climate (Jan. 1901 - Dec. 2012), (Internet), NCAS British Atmospheric Data Centre, 2013, Date of citation. http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__ACTIVITY_0c08abfc-f2d5-11e2-a948-00163e251233. doi:10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992

  • Davini P, Cagnazzo C, Fogli PG, Manzini E, Gualdi S, Navarra A (2013) European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Clim Dyn. doi:10.1007/s00382-013-1873-y

  • Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon K, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee HC, Lin SJ, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:643–674. doi:10.1175/JCLI3629.1

    Article  Google Scholar 

  • Dimri AP (2012) Atmospheric water budget over the western Himalayas in a regional climate model. J Earth Syst Sci 121:963–973. doi:10.1007/s12040-012-0204-8

    Article  Google Scholar 

  • Donner LJ (1993) A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J Atmos Sci 50:889–906. doi:10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2

    Article  Google Scholar 

  • Emanuel K (1994) Atmospheric convection. Oxford University Press, Oxford, p 580

    Google Scholar 

  • Fowler HJ, Archer DR (2006) Conflicting signals of climatic change in the upper Indus basin. J Clim 19:4276–4293. doi:10.1175/JCLI3860.1

    Article  Google Scholar 

  • Gao X, Zhao Z, Ding Y, Huang R, Giorgi F (2001) Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv Atmos Sci 18:1224–1230. doi:10.1007/s00376-001-0036-y

    Article  Google Scholar 

  • Gao X, Shi Y, Song R, Giorgi F, Wang Y, Zhang D (2008) Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteorol Atmos Phys 100:73–86. doi:10.1007/s00703-008-0296-5

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick C, Legutke S, Bader J, Bttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5:572–597. doi:10.1002/jame.20038

    Article  Google Scholar 

  • Gregory D, Rowntree P (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closures. Mon Weather Rev 118:1483–1506. doi:10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2

    Article  Google Scholar 

  • Hasson S, Lucarini V, Pascale S (2013) Hydrological cycle over South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 4:199–217. doi:10.5194/esd-4-199-2013

    Article  Google Scholar 

  • Hasson S, Lucarini V, Pascale S, Böhner J (2014) Seasonality of the hydrological cycle in major South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 5:67–87. doi:10.5194/esd-5-67-2014

    Article  Google Scholar 

  • Hazeleger W, Wang X, Severijns C, Stefănescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2012) EC-Earth v2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629. doi:10.1007/s00382-011-1228-5

    Article  Google Scholar 

  • Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt Res Dev 25:332–340. doi:10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2

  • Hewitt K (2011) Glacier change, concentration, and elevation effects in the Karakoram Himalaya, upper Indus basin. Mt Res Dev 31:188–200. doi:10.1659/MRD-JOURNAL-D-11-00020.1

    Article  Google Scholar 

  • Hourdin F, Foujols MA, Codron F, Guemas V, Dufresne JL, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40:2167–2192. doi:10.1007/s00382-012-1411-3

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque JF, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. doi:10.1175/BAMS-D-12-00121.1

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, and Midgley PM (eds.) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

  • Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32:241–254. doi:10.1007/BF02289588

    Article  Google Scholar 

  • Junker C, Liousse C (2008) A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos Chem Phys 8:1195–1207. doi:10.5194/acp-8-1195-2008

    Article  Google Scholar 

  • Kaufman YJ, Fraser RS (1997) The effect of smoke particles on clouds and climate forcing. Science 277:1636–1639. doi:10.1126/science.277.5332.1636

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1990) A one-dimensional entraining/ detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802. doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2

    Article  Google Scholar 

  • Knutti R, Masson D, Gettelman A (2013) Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40:1194–1199. doi:10.1002/grl.50256

    Article  Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159. doi:10.1007/s00704-006-0282-0

    Article  Google Scholar 

  • Kuo HL (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J Atmos Sci 22:40–63. doi:10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2

    Article  Google Scholar 

  • Kuo HL (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J Atmos Sci 31:1232–1240. doi:10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2

    Article  Google Scholar 

  • Lal M, Meehl GA, Arblaster JM (2000) Simulation of Indian summer monsoon rainfall and its intraseasonal variability in the NCAR climate system model. Reg Environ Change 1:163–179. doi:10.1007/s101130000017

    Article  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Aardenne JV, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7030. doi:10.5194/acp-10-7017-2010

    Article  Google Scholar 

  • Lee JY, Wang B, Kang IS, Shukla J, Kumar A, Kug JS, Schemm JKE, Luo JJ, Yamagata T, Fu X, Alves O, Stern B, Rosati T, Park CK (2010) How are seasonal prediction skills related to models’ performance on mean state and annual cycle? Clim Dyn 35:183–267. doi:10.1007/s00382-010-0857-4

    Article  Google Scholar 

  • Li L, Lin P, Yu Y, Wang B, Zhou T, Liu L, Liu J, Bao Q, Xu S, Huang W, Xia K, Pu Y, Dong L, Shen S, Liu Y, Hu N, Liu M, Sun W, Shi X, Zheng W, Wu B, Song M, Liu H, Zhang X, Wu G, Xue W, Huang X, Yang G, Song Z, Qiao F (2013) The flexible global ocean–atmosphere–land system model: Grid-point Version 2: FGOALS-g2. Adv Atmos Sci 30:543–560. doi:10.1007/s00376-012-2140-6

    Article  Google Scholar 

  • Manabe S, Strickler RF (1964) Thermal equilibrium of the atmosphere with a convective adjustment. J Atmos Sci 21:361–385. doi:10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2

    Article  Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Probability and mathematical statistics. Academic Press, Waltham

    Google Scholar 

  • Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757. doi:10.5194/gmd-4-723-2011

    Article  Google Scholar 

  • Masson D, Knutti R (2011) Climate model genealogy. Geophys Res Lett 38:L08703. doi:10.1029/2011GL046864

    Google Scholar 

  • Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, Haak H, Jungclaus J, Klocke D, Matei D, Mikolajewicz U, Notz D, Pincus R, Schmidt H, Tomassini L (2012) he WCRP CMIP3 multimodel dataset: tuning the climate of a global model. J Adv Model Earth Syst 4:M00A01. doi:10.1029/2012MS000154

    Article  Google Scholar 

  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Tebaldi C, Strand WG, White JB III (2012) Climate system response to external forcings and climate change projections in CCSM4. J Clim 25:3661–3683. doi:10.1175/JCLI-D-11-00240.1

    Article  Google Scholar 

  • Mehran A, AghaKouchak A, Phillips TJ (2014) Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J Geophys Res Atmos 119:1695–1707. doi:10.1002/2013JD021152

    Article  Google Scholar 

  • Mieville A, Granier C, Lioussee C, Guillaume B, Mouillot F, Lamarque JF, Grégoire JM, Pétrond G (2010) Emissions of gases and particles from biomass burning using satellite data and an historical reconstruction. Atmos Environ 44:1469–1477. doi:10.1016/j.atmosenv.2010.01.011

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • New M, Hulme M, Jones PD (1999) Representing twentieth century space-time climate variability. Part 1: development of a 1961–90 mean monthly terrestrial climatology. J Clim 12:829–856. doi:10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2

    Article  Google Scholar 

  • New M, Hulme M, Jones PD (2000) Representing twentieth century space-time climate variability. Part 2: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238. doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2

    Article  Google Scholar 

  • Pal JS et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409. doi:10.1175/BAMS-88-9-1395

    Article  Google Scholar 

  • Palazzi E, von Hardenberg J, Provenzale A (2013) Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. J Geophys Res 118:85–100. doi:10.1029/2012JD018697

    Google Scholar 

  • Phillips TJ, Gleckler PJ (2006) Evaluation of continental precipitation in 20th century climate simulations: the utility of multimodel statistics. Water Resour Res 42:W03202. doi:10.1029/2005WR004313

    Article  Google Scholar 

  • Pollard E, Lakhani KH, Rothery P (1987) The detection of density-dependence from a series of annual censuses. Ecology 68:2046–2055. doi:10.2307/1939895

    Article  Google Scholar 

  • Rasmussen R, Baker B, Kochendorfer J, Meyers T, Landolt S, Fischer AP, Black J, Thériault JM, Kucera P, Gochis D, Smith C, Nitu R, Hall M, Ikeda K, Gutmann E (2012) How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull Am Meteorol Soc 93:811–829. doi:10.1175/BAMS-D-11-00052.1

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. doi:10.1007/s10584-011-0149-y

    Article  Google Scholar 

  • Rohrer M, Salzmann N, Stoffel M, Kulkarni AV (2013) Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Sci Total Environ 468–469:S60–S70. doi:10.1016/j.scitotenv.2013.09.056

    Article  Google Scholar 

  • Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol-and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404. doi:10.5194/acp-12-6377-2012

    Article  Google Scholar 

  • Schultz MG, Heil A, Hoelzemann JJ, Spessa A, Thonicke K, Goldammer JG, Held AC, Pereira JMC, van het Bolscher M (2008) Global wildland fire emissions from 1960 to 2000. Global Biogeochem Cycles 22:GB2002. doi:10.1029/2007GB003031

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40. doi:10.1007/s00704-013-0860-x

    Article  Google Scholar 

  • Schreiber T, Schmitz A (2000) Surrogate time series. Phys D Nonlinear Phenom 142:346–382. doi:10.1016/S0167-2789(00)00043-9

    Article  Google Scholar 

  • Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24:4368–4384. doi:10.1175/2011JCLI4104.1

    Article  Google Scholar 

  • Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of the 23rd ACM national conference, Brandon/Systems Press, Princeton, pp 517–524

  • Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Arias SD (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116. doi:10.5194/acp-11-1101-2011

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate Change 2007 - The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press

  • Song Z, Qiao F, Song Y (2012) Response of the equatorial basin-wide SST to wave mixing in a climate model: an amendment to tropical bias. J Geophys Res 117:C00J26. doi:10.1029/2012JC007931

    Google Scholar 

  • Sperber KR, Annamalai H, Kang I-S, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi:10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Sperber KR, Annamalai H (2014) The use of fractional accumulated precipitation for the evaluation of the annual cycle of monsoons. Clim Dyn (Online First Article). doi:10.1007/s00382-014-2099-3

  • Stevens B, Bony S (2013) What are climate models missing? Science 340:1053–1054. doi:10.1126/science.1237554

    Article  Google Scholar 

  • Su F, Duan X, Chen D, Hao Z, Cuo L (2012) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26:3187–3208. doi:10.1175/JCLI-D-12-00321.1

    Article  Google Scholar 

  • Syed FS, Giorgi F, Pal JS, King MP (2006) Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theor Appl Climatol 86:147–160. doi:10.1007/s00704-005-0217-1

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Phil Trans R Soc Lond A 365:2053–2075

    Article  Google Scholar 

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. doi:10.1007/s10584-011-0151-4

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217. doi:10.1175/BAMS-84-9-1205

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, y Mélia DS, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. doi:10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv Atmos Ocean Phys 46:414–431. doi:10.1134/S000143381004002X

    Article  Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi:10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872. doi:10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF Jr (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441. doi:10.5194/acp-6-3423-2006

    Article  Google Scholar 

  • Wilcox LJ, Highwood EJ, Dunstone NJ (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ Res Lett 8:024033. doi:10.1088/1748-9326/8/2/024033

    Article  Google Scholar 

  • Willmott CJ, Rowe CM, Philpot WD (1985) Small-scale climate maps: a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. Am Cartogr 12:5–16

    Article  Google Scholar 

  • Winiger M, Gumpert M, Yamout H (2005) Karakorum–Hindukush–western Himalaya: assessing high-altitude water resources. Hydrol Process 19:2329–2338. doi:10.1002/hyp.5887

    Article  Google Scholar 

  • Wu T, Li W, Ji J, Xin X, Li L, Wang Z, Zhang Y, Li J, Zhang F, Wei M, Shi X, Wu F, Zhang L, Chu M, Jie W, Liu Y, Wang F, Liu X, Li Q, Dong M, Liang X, Gao Y, Zhang J (2013) Global carbon budgets simulated by the Beijing Climate Center climate system model for the last century. J Geophys Res Atmos 118:4326–4347. doi:10.1002/jgrd.50320

    Article  Google Scholar 

  • Yadav RK, Kumar KR, Rajeevan M (2012) Characteristic features of winter precipitation and its variability over northwest India. J Earth Syst Sci 121:611–623. doi:10.1007/s12040-012-0184-8

    Article  Google Scholar 

  • Yu R, Li W, Zhang X, Liu Y, Yu Y, Liu H, Zhou T (2000) Climatic features related to Eastern China summer rainfalls in the NCAR CCM3. Adv Atmos Sci 17:503–518. doi:10.1007/s00376-000-0014-9

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Jpn Ser II 90A:23–64. doi:10.2151/jmsj.2012-A02

    Article  Google Scholar 

  • Zhou TJ, Li ZX (2002) Simulation of the east Asian summer monsoon by using a variable resolution atmospheric GCM. Clim Dyn 19:167–180. doi:10.1007/s00382-001-0214-8

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Project of Interest NextData (www.nextdataproject.it), funded by the Italian Ministry of Education, University and Research. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for climate model diagnosis and intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank the two anonymous reviewers for their comments which helped to significantly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Palazzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palazzi, E., von Hardenberg, J., Terzago, S. et al. Precipitation in the Karakoram-Himalaya: a CMIP5 view. Clim Dyn 45, 21–45 (2015). https://doi.org/10.1007/s00382-014-2341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2341-z

Keywords

Navigation