The hydrothermal stream function is calculated for the years 1980–2000 in the historical simulations and ERA-Interim reanalysis in Table 1 (Fig. 2). The unit of the stream function is Sverdrup (Sv) where \(1\hbox { Sv} = 10^9 \hbox { kg}\hbox { s}^{-1}\). For all models the result is a single anti-clockwise cycle as indicated by the arrows in the bottom right panel in Fig. 2. The result is very similar to Kjellsson et al. (2014) who used ERA-Interim and EC-Earth but longer periods. For all models three distinct branches are discernible along the \(-30\hbox { Sv}\) stream line. One branch extends from \((l \approx 40\hbox { kJ}\hbox { kg}^{-1}, s \approx 300\hbox { kJ}\hbox { kg}^{-1})\) to \((l = 0\hbox { kJ}\hbox { kg}^{-1}, s \approx 340\hbox { kJ}\hbox { kg}^{-1})\) with stream lines approximately parallel to the tropical-mean (\(15^{\circ }\hbox {S}\)–\(15^{\circ }\hbox {N}\)) moist adiabat where MSE is almost conserved. This indicates conversion of LH to DSE by condensation of water vapour associated with cloud formation and precipitation. DSE tendencies are positive to the right of the mean tropical profile and negative to the left. This suggests that moist ascent is concentrated where MSE is higher than the tropical mean. From \((l = 0\hbox { kJ}\hbox { kg}^{-1}, s \approx 340\hbox { kJ}\hbox { kg}^{-1})\) mass is transported toward lower DSE along \(l = 0\hbox { kJ}\hbox { kg}^{-1}\), indicating radiative cooling of dry air. Some air descends in the tropics where DSE is seldom lower than \(300\hbox { kJ}\hbox { kg}^{-1}\), and some air is transported all the way to \((l = 0\hbox { kJ}\hbox { kg}^{-1}, s \approx 260\hbox { kJ}\hbox { kg}^{-1})\) where the low DSE indicates cold air near the polar regions. As the air cools and descends it is moistened either near the surface or by mixing with moisture transported upward by e.g. shallow convection. This increases LH. For lower tropospheric air, surface heating increases DSE which increases \(q_s\) (Eq. 1) so that the flow follows a Clausius–Clapeyron relation. The Clausius–Clapeyron lines in Fig. 2 are calculated from Eq. 1 using \(e_s(273\hbox { K}) = 611\hbox { Pa}\) (cf. Wallace and Hobbs (2006)) and \(T = c_p/s\) (i.e. \(z=0\hbox { m}\) and p = 1,013 hPa). This is identical to calculations by Kjellsson et al. (2014). The Clausius–Clapeyron lines thus represent saturated surface air. Testing different relative humidities shows that the actual stream lines follow a line consistent with ~80 % relative humidity. A global-mean relative humidity of ~80 % was found by e.g. Held and Soden (2006) and is not projected to change significantly with global warming. Following Kjellsson et al. (2014), the three branches are henceforth referred to as “precipitating” branch, “radiative cooling” branch and “moistening” branch after the main processes they represent.
Some differences in amplitude and shape of the hydrothermal stream function can be noted between the models (Fig. 2 and Table 1). Some models have a distinct “dip” in the precipitating branch (e.g. CCSM4, NorESM1-M, MIROC5) while some have nearly straight stream lines (e.g. GFDL-CM3, BCC-CSM1.1, IPSL-CM5B-LR). The “dip” can be explained by the MSE minimum in the tropical mid-troposphere which is due to moist air in convecting plumes detraining and mixing with the drier environment (Pauluis and Mrowiec 2013). Hence, differences in the precipitation branch between models could partly be owing to differences in parameterisations of convection and entrainment. E.g. CCSM4 and NorESM1-M display similarities in the precipitating branch and both models use the Community Atmospheric Model (CAM) but in somewhat different versions. There is also some similarity between EC-Earth and ERA-Interim which both use the IFS atmospheric model from ECMWF.
The hydrothermal stream function is also calculated for simulations of the late twenty-first century (2080-2100) in the RCP8.5 emission scenario. The overall result is that the stream function weakens (Table 1) and widens compared to 1980–2000 (Figs. 2, 3). Increased surface air temperatures increases the surface DSE while also increasing the surface LH following the Clausius–Clapeyron relationship. The moistening branch does not move closer or further away from the Clausius–Clapeyron line but instead widens along it. This suggests that relative humidity does not change by much with global warming. The increased DSE and LH results in increased MSE almost uniformly throughout the precipitation branch which widens the hydrothermal stream function without altering its shape. Profiles of LH, DSE and MSE show that the largest increase in LH is in the lower troposphere while the largest DSE increase is in the upper troposphere (Fig. 4). This results in an MSE increase that is almost uniform throughout the tropical troposphere.
Changes in the global atmospheric circulation with global warming are assessed using mainly three measures calculated from each climate model. The width, dLH, of the hydrothermal stream function is defined as the span in LH between the cooling branch and the outermost “tip” where the moistening and precipitation branches meet. The strength of the circulation, \(\psi \), is defined as the peak amplitude of the hydrothermal stream function. Lastly, the surface air temperature, \(T_s\), is calculated by taking the temperature and pressure in the lowest model level (\(k = KM\)) and assuming constant potential temperature in the layer, i.e. \(\theta _{\text {KM}} = \theta _s\),
$$\begin{aligned} \theta _{\text {KM}} = T_{\text {KM}} \left( \frac{p_0}{p_{\text {KM}}} \right) ^{R/c_p}, \quad \theta _{s} = T_{s} \left( \frac{p_{0}}{p_s} \right) ^{R/c_p} \Rightarrow T_s = T_k \left( \frac{p_{s}}{p_{\text {KM}}} \right) ^{R/c_p} . \end{aligned}$$
(10)
Surface air temperature is calculated from \(T\) on model levels to ensure that it has the same temporal and spatial resolution as the data and to be consistent for all models and reanalysis. It should be noted that the lowermost model level mid-point is very close to the surface, typically a few meters, so \(T_s \approx T_{\text {KM}}\).
The three metrics are calculated for each model for both periods 1980-2000 and 2080-2100, and the change between the two periods are denoted \({\varDelta } \text {dLH},\, {\varDelta } \psi \), and \({\varDelta } T_s\) respectively. Linear regression of the fractional changes \({\varDelta } \text {dLH} / \text {dLH}\) and \({\varDelta } \psi / \psi \) to \({\varDelta } T_s\) shows that the hydrothermal stream function widens by \(k_{{\varDelta } \text {dLH}} = 7.1\,\%\,\hbox { K}^{-1}\) and weakens by \(k_{{\varDelta } \psi } = -5.1\,\%\,\text {K}^{-1}\) (Fig. 5).
Interestingly, the weakening is offset so that \({\varDelta } T_s \sim 2\hbox { K}\) results in almost no weakening but a clear widening. The results by Held and Soden (2006) showed that the increase in precipitation is offset in a similar manner. It should be kept in mind that the hydrothermal stream function resides in LH–DSE coordinates and a widening thus implies a shift of LH and DSE in the precipitation branch towards higher values. The widening does not imply a widening in geometrical \((x,y,p)\) coordinates, although a widening of the Hadley cells in \((y,p)\) space has been found (Lu et al. 2008). Furthermore the weakening of the hydrothermal stream function is a combination of changes in both zonal and meridional overturning circulations. Hence, it may include a strengthening of the zonal-mean meridional overturning in midlatitudes as reported by Laliberté and Pauluis (2010) and Wu and Pauluis (2013). Changes in the zonal-mean circulations in various vertical coordinates are discussed later in this paper.
As stated above LH mostly increases in the lower troposphere and DSE mostly increases in the upper troposphere such that MSE increases nearly uniformly with height (Fig. 4). The fractional increase in tropical MSE per degree of warming is denoted as \({\varDelta } h / h\), where \({\varDelta } h\) is the difference between the historical (1980-2000) and RCP8.5 (2080-2100) simulations. The fractional change in tropical near-surface MSE can be predicted from the fractional changes in DSE and LH
$$\begin{aligned} \frac{{\varDelta } h}{h}&= \frac{{\varDelta } s}{h} + \frac{{\varDelta } l}{h} \approx \left( \frac{c_p}{h} + \frac{0.07 L_v q}{h} \right) {\varDelta } T_s, \end{aligned}$$
where \(7\,\%\,\text {K}^{-1}\) is the increase in specific humidity from Eq. 2. For typical values \(q = 16\hbox { kg}\hbox { kg}^{-1}\) and \(h = 340\hbox { kJ}\hbox { kg}^{-1}\) the increase in MSE is \({\varDelta } h / h = 1.1\,\%\,\text {K}^{-1}\). Regressing tropical-mean \({\varDelta } l/l,\, {\varDelta } s/s\) and \({\varDelta } h/h\) as a function of \({\varDelta } T_s\) shows that MSE increases by \(1.02\,\%\,\text {K}^{-1}\) in the CMIP5 models, which is close to the predicted value. In the lower troposphere \(0.30\,\% \,\text {K}^{-1}\) is due to DSE (i.e. temperature) increase and \(0.72\,\% \,\text {K}^{-1}\) comes from increased LH (i.e. specific humidity). In the upper troposphere there is almost no contribution from LH increase.
Previous studies (Held and Soden 2006; Stephens and Hu 2010) have studied how precipitation changes with global warming and found that the fractional increase is \(2\,\% \,\text {K}^{-1}\). If the change in precipitation is estimated as the product of mass flux in the precipitation branch and LH in lower tropospheric air (similar to Held and Soden (2006)) the fractional increase of precipitation is \(-5.1\,\% \,\text {K}^{-1} + 7.1\,\% \, \text {K}^{-1} = 2\,\% ~ \text {K}^{-1}\). This consistency suggests that the estimate is reasonable and that the hydrothermal stream function provides a good measure of the strength of the global atmospheric circulation.
Increased precipitation implies increased LH flux across DSE surfaces in the precipitation branch. LH flux is calculated as
$$\begin{aligned} F_{\text {LH}}(s) = \int _{l_{\text {min}}(s)}^{l_{\text {max}}(s)} \frac{\partial {\varPsi }(l,s)}{\partial l} l ~dl = - \int _{l_{\text {min}}(s)}^{l_{\text {max}}(s)} ({\varPsi }(l,s) - {\varPsi }_0) ~dl \end{aligned}$$
(11)
where \(l_{\text {min}}(s)\) and \(l_{\text {max}}(s)\) are the minimum and maximum LH values for which \({\varPsi }(l,s) = {\varPsi }_0\). The last step in Eq. 11 is obtained by integration by parts. To assert that only closed stream lines are included, \({\varPsi }_0 = -50\hbox { Sv}\). Calculating the change of the mean LH flux across DSE surfaces between 315 and 325\(\hbox { kJ}\hbox { kg}^{-1}\) and regressing onto \({\varDelta } T_s\) shows a statistically significant (\(p < 0.05\)) increase with global warming (Fig. 6). Since the hydrothermal stream function has closed stream lines it follows that the increased DSE resulting from increased LH flux in the precipitation branch must be lost by increased radiative cooling in the cooling branch. In fact, several studies (Held and Soden 2006; Stephens and Hu 2010; Bony et al. 2013) suggest that changes in precipitation are constrained by changes in radiative cooling. In the hydrothermal stream function, radiative cooling is negative DSE tendency for very dry air. The energy that is lost through this process can be calculated by integrating the negative DSE tendencies, i.e.
$$\begin{aligned} \dot{S}^{-} = \int _s^\infty \int _{l_{\text {min}}(s)}^{l_{\text {max}}(s)} \frac{\partial {\varPsi }(l,s)}{\partial l} \mu \left[ 0 -\frac{\partial {\varPsi }(l,s)}{\partial l} \right] ~dl ~ds, \end{aligned}$$
(12)
where the Heaviside function, \(\mu \), only selects the DSE tendency where it is negative, i.e. there is diabatic cooling. As in Eq. 11 we set \(l_{\text {min}}(s)\) and \(l_{\text {max}}(s)\) as boundaries and only count \({\varPsi }(l,s)\) inside the \({\varPsi }_0 = -50\hbox { Sv}\) stream line. Regressing the change \({\varDelta } \dot{S}^{-}\) onto \({\varDelta } T_s\) does not result in a statistically significant trend (\(p \sim 0.07\)). However, changes in the cooling branch and precipitation branch (Fig. 6) result in linear trends of similar magnitude but opposite signs indicating some balance between them. Note that the changes in radiative cooling are offset to be higher than the changes in LH flux. This can be due to various reasons such as LH fluxes being underestimated as moist convection is not resolved by the data, or because DSE can increase in the precipitation branch from other factors such as radiative absorption or cloud feedbacks.
The hydrothermal stream function captures both the zonal and meridional overturning cells, e.g. Hadley and Walker cells as well as the midlatitude eddies. By comparing changes in the meridional overturning stream functions, \({\varPsi }(y,\chi )\), to changes in the hydrothermal stream function, it is possible to estimate to what extent the meridional component contributes to the weakening of the global atmospheric circulation. The two hemisphere-wide overturning cells in \(y\)–MSE coordinates weaken with global warming in all models studied here (Fig. 7). The Northern Hemisphere (NH) cell weakens by \(-5.8\,\%\,\hbox { K}^{-1}\) and the Southern Hemisphere (SH) cell by \(-2.0\,\%\,\hbox { K}^{-1}\). This corresponds to changes of \({\varDelta } {\varPsi }_{\text {NH}}(y,h) = -6.4\hbox { Sv}\hbox { K}^{-1}\) and \({\varDelta } {\varPsi }_{\text {SH}}(y,h) =3.4\hbox { Sv}\hbox { K}^{-1}\) for the NH and SH cells respectively. Changes in the meridional overturning in LH (\({\varPsi }(y,l)\)) and DSE \(({\varPsi }(y,s))\) coordinates are not statistically significant but do indicate a weakening of the Hadley cells in both cases, consistent with results by Lu et al. (2008) and Wu and Pauluis (2013). It should be pointed out that Laliberté and Pauluis (2010) and Wu and Pauluis (2013) find a strengthening of the meridional overturning stream function in moist isentropic coordinates in NH midlatitudes in boreal winter and SH midlatitudes in austral winter. However, the results in Fig. 7 reflect changes in amplitude of the annual-mean meridional overturning cells so a strengthening in the midlatitudes in winter may not show. Any discrepancies between Laliberté and Pauluis (2010), Wu and Pauluis (2013) and the present study can thus be explained by the different methodologies. Comparing the weakening of the meridional overturning (Fig. 7) to the weakening of the hydrothermal stream function which is \(22.8\hbox { Sv}\hbox { K}^{-1}\) (Fig. 5) the results show that only a small part of the weakening can be explained by changes in the zonal-mean circulation. This implies that most of the weakening occurs in zonal asymmetric features such as zonal overturning circulations as well as local meridional overturning circulations at different longitudes. This could be because the meridional overturning circulation is constrained by e.g. the equator-to-pole temperature gradient. Results by Vecchi et al. (2006), Vecchi and Soden (2007), and Tokinaga et al. (2012) also suggest that most of the weakening happens in the zonal overturning circulations (e.g. Walker circulation) and not the meridional overturning circulations.
The meridional fluxes of LH, DSE and MSE (Eq. 6), and their changes from 1980-2000 to 2080-2100, are calculated from the meridional overturning stream functions in LH, DSE and MSE coordinates respectively (Figs. 1, 8). LH fluxes increase at almost all latitudes, consistent with an intensified hydrological cycle as predicted by Held and Soden (2006). Furthermore, there is a distinct increase in LH flux by the SH Hadley cell by up to \(1.5\) PW in some models. The increases in LH fluxes are partly counteracted by decreases in DSE fluxes. In the tropics, increases in equatorward LH fluxes are of similar magnitude as increases in poleward fluxes of DSE which results in almost no change in MSE fluxes. In the midlatitudes, the increases in poleward LH fluxes are generally somewhat larger than the decreases in poleward DSE fluxes giving a slight increase in MSE fluxes by <0.5 PW. Czaja and Marshall (2006) and Stone (1978) suggested that the combined poleward heat transport by the atmosphere and ocean are set by the solar constant, the radius of Earth and the planetary albedo, and might thus not change by much with global warming. This study presents increases in poleward MSE flux in the atmosphere while other studies suggest a decrease in poleward heat flux by the oceans associated with a slowdown of the Atlantic Meridional Overturning Circulation Weaver et al. (2012).