Skip to main content

Are estimates of anthropogenic and natural influences on Australia’s extreme 2010–2012 rainfall model-dependent?


Australia experienced much above average rainfall in association with strong, extended La Niña conditions during 2010–2012. Was the heavy Australian rainfall influenced by La Niña conditions and/or anthropogenic greenhouse gases? We investigate the relative contributions of anthropogenic climate change and natural climatic variability to the likelihood of heavy Australian rainfall using three distinct model datasets. Area-average rainfall anomalies for model simulations with natural forcings only were compared to simulations with both anthropogenic and natural forcings using 16 models participating in the Coupled Model Intercomparison Project Phase 5. Using fraction of attributable risk to compare the likelihood of unusual rainfall between the parallel experiments, we find attribution statements are uncertain, with FAR values sensitive to the attribution parameters considered, including thresholds, regions and seasons. When heavy rainfall probabilities were next investigated in ensembles of two atmospheric general circulation models, run with and without anthropogenically-induced sea surface temperature changes, results were model-dependent. Overall, the attribution of seasonal-scale heavy Australia rainfall to a particular cause is likely more complicated than for temperature extremes. As estimates of the greenhouse gas attributable change in rainfall risk may depend on the model datasets considered, it is also useful to consider model outputs from several datasets and using various estimates of counterfactual surface conditions to establish robust attribution statements for extreme rainfall events. In contrast, comparing the likelihoods of heavy rainfall during simulated La Niña years with El Niño/neutral years reveals a substantial La Niña influence on Australian rainfall during 2010–2012 that is robust to changes in the attribution framework.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Allen MR, Stott PA (2003) Estimating signal amplitudes in optimal fingerprinting, Part I: theory. Clim Dyn 21(5–6):477–491. doi:10.1007/s00382-003-0313-9

    Article  Google Scholar 

  2. Bureau of Meteorology (2012a) Australia’s wettest two-year period on record; 2010–2011. Special Climate Statement 38

  3. Bureau of Meteorology (2012b) Exceptional heavy rainfall across southeast Australia. Special Climate Statement 39

  4. Christidis N, Stott PA (2014) Change in the odds of warm years and seasons due to anthropogenic influence on the climate. J Clim 27(7):2607–2621. doi:10.1175/JCLI-D-13-00563.1

    Article  Google Scholar 

  5. Christidis N, Stott PA, Scaife AA, Arribas A, Jones GS, Copsey D, Knight JR, Tennant WJ (2013a) A New HadGEM3-A-based system for attribution of weather- and climate-related extreme events. J Clim 26(9):2756–2783. doi:10.1175/JCLI-D-12-00169.1

    Article  Google Scholar 

  6. Christidis N, Stott PA, Karoly DJ, Ciavarella A (2013b) An attribution study of the heavy rainfall over eastern Australia in March 2012, edited by T. C. Peterson, M. P. Hoerling, P. A. Stott, and S. C. Herring. Bull Am Meteorol Soc 94(9):S58–S61

    Google Scholar 

  7. Evans JP, Boyer-Souchet I (2012) Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys Res Lett 39(10):L10803. doi:10.1029/2012GL052014

  8. Ganter C, Tobin S (2013), Australia In: Blunden J, Arndt DS (eds) State of the climate in 2012. Bull Am Meteorol Soc 94: S196–S198

  9. Gordon HB et al. (2002) The CSIRO Mk3 Climate System Model, CSIRO Atmospheric Research Technical Paper 60

  10. Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58(4):233

    Google Scholar 

  11. King AD, Lewis SC, Perkins SE, Alexander LV, Donat MG, Karoly DJ, Black MT (2013) Limited Evidence of Anthropogenic Influence on the 2011–12 Extreme Rainfall Over Southeast Australia, edited by T. C. Peterson, M. P. Hoerling, P. A. Stott, and S. C. Herring. Bull Am Meteorol Soc 94(9):S55–S58

    Google Scholar 

  12. Lewis SC, Karoly DJ (2013) Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys Res Lett. doi:10.1002/grl.50673

    Google Scholar 

  13. Li J et al (2013) El Niño modulations over the past seven centuries. Nat Clim Change 3(9):822–826. doi:10.1038/nclimate1936

    Article  Google Scholar 

  14. McBride JL, Nicholls N (1983) AMS journals online—seasonal relationships between australian rainfall and the southern oscillation. Mon Wea Rev

  15. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res Atmos 117(D8):D08101. doi:10.1029/2011JD017187

    Article  Google Scholar 

  16. Nicholls N (2011) What caused the eastern Australia heavy rains and floods of 2010/11? Bull Aust Meteorol Oceanogr Soc 33–34

  17. Nicholls N, Lavery B, Frederiksen C, Drosdowsky W, Torok S (1996) Recent apparent changes in relationships between the El Niño—Southern oscillation and Australian rainfall and temperature. Geophys Res Lett 23(23):3357–3360

    Article  Google Scholar 

  18. Pall P, Allen MR, Stone DA (2007) Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim Dyn

  19. Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR (2011a) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470(7334):382–385. doi:10.1038/nature09762

    Article  Google Scholar 

  20. Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR (2011b) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470(7334):382–385. doi:10.1038/nature09762

    Article  Google Scholar 

  21. Palmer T, Raisanen J (2002) Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415(6871):512–514

    Article  Google Scholar 

  22. Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quéré C, Marland G, Raupach MR, Wilson C (2012) The challenge to keep global warming below 2 °C. Nature 3(1):4–6. doi:10.1038/nclimate1783

    Google Scholar 

  23. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. doi.10.1175/JCLI3637.1

  24. Shiogama H, Watanabe M, Imada Y, Mori M, Ishii M, Kimoto M (2013) An event attribution of the 2010 drought in the South Amazon region using the MIROC5 model. Atmos Sci Lett. doi:10.1002/asl2.435

    Google Scholar 

  25. Stone DA, Allen MR (2005) The end-to-end attribution problem: from emissions to impacts. Clim Change 71(3):303–318. doi:10.1007/s10584-005-6778-2

    Article  Google Scholar 

  26. Stott PA, Allen MR, Jones GS (2003) Estimating signal amplitudes in optimal fingerprinting. Part II: application to general circulation models. Clim Dyn 21(5–6):493–500. doi:10.1007/s00382-003-0314-8

    Article  Google Scholar 

  27. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432(7017):610–614. doi:10.1038/nature03089

    Article  Google Scholar 

  28. Stott PA, Mitchell JFB, Allen MR, Delworth TL, Gregory JM, Meehl GA, Santer BD (2006) Observational constraints on past attributable warming and predictions of future global warming. J Clim 19(13):3055–3069. doi:10.1175/JCLI3802.1

    Article  Google Scholar 

  29. Stott PA, Allen M, Christidis N, Dole R, Hoerling M, Huntingford C, Pall P, Perlwitz J, Stone D (2012) Attribution of weather and climate-related extreme events, WCRP Position Paper on ACE. Accessed 16 March 2012

  30. Sugiyama M, Shiogama H, Emori S (2010) Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc Natl Acad Sci 107(2):571–575. doi:10.1073/pnas.0903186107

    Article  Google Scholar 

  31. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

Download references


This research was supported by funding from the Australian Research Council Centre of Excellence for Climate System Science (Grant CE 110001028). This work was also supported by the NCI National Facility at the ANU. We also thank the Dáithí Stone at the Lawrence Berkeley National Laboratory and Nikos Christidis and Peter Stott at the Met Office Hadley Centre for generously providing access to data. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank climate modelling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Finally, we thank the two reviewers for their useful comments on the manuscript.

Author information



Corresponding author

Correspondence to Sophie C. Lewis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lewis, S.C., Karoly, D.J. Are estimates of anthropogenic and natural influences on Australia’s extreme 2010–2012 rainfall model-dependent?. Clim Dyn 45, 679–695 (2015).

Download citation


  • Attribution
  • Climate change
  • Extreme rainfall
  • ENSO
  • Australia