Skip to main content

The influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during past and future warm periods: a model study

Abstract

The sensitivity of the climate system to changes in radiative forcing is crucial for our understanding of past and future climates. Especially important are feedbacks related to melting of ice sheets like the Greenland ice sheet (GIS) and its potential impact on the Atlantic meridional overturning circulation (AMOC). These effects are likely to delay and dampen predicted long-term warming trends. Estimates of climate sensitivity may be deduced from palaeoclimate-reconstructions, but this raises the question whether past climate sensitivity is applicable to the future. Therefore we have analysed the impact of GIS melt water on the AMOC strength in two past warm climates (last interglacial and early present interglacial) and three future scenarios with three different model parameter sets. These model parameter sets represent three different model sensitivities to freshwater perturbation: low, moderate and high. In both the moderate and high sensitivity versions, we find for lower GIS melt rates (below 54 mSv, Sv = 106 m3/s) a clear difference between past and future warm climates in the sensitivity of the AMOC to GIS melt. This difference is connected to the convective activity in the Labrador Sea and the amount of additional surface freshening due to sea ice melting. In contrast, for higher GIS melt rates (over 54 mSv) we find similar reductions of the AMOC strength in all cases. Considering the low sensitivity version of our model, we find that for all GIS melt rates the influence of freshwater forcing on the AMOC is independent of the background climate. Our results and implications are thus strongly determined by the parameter set considered in our model. Nonetheless, our results from two out of three model versions suggest that proxy-based reconstructions of past AMOC sensitivity to GIS melt are likely to be misleading if interpreted for future applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alley RB (2007) Wally was right: predictive ability of the North Atlantic “conveyor belt” hypothesis for abrupt climate change. Annu Rev Earth Planet Sci 35:241–272. doi:10.1146/annurev.earth.35.081006.131524

    Article  Google Scholar 

  2. Alley RB, Mayewski PA, Sowers T et al (1997) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486. doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2

    Article  Google Scholar 

  3. Bakker P, Van Meerbeeck CJ, Renssen H (2012) Sensitivity of the North Atlantic climate to Greenland ice sheet melting during the Last Interglacial. Clim Past 8:995–1009. doi:10.5194/cp-8-995-2012

    Article  Google Scholar 

  4. Bakker P, Renssen H, Van Meerbeeck CJ (2013a) Early last interglacial Greenland ice sheet melting and a sustained period of meridional overturning weakening: a model analysis of the uncertainties. Clim Dyn 1–15. doi:10.1007/s00382-013-1935-1

  5. Bakker P, Stone EJ, Charbit S et al (2013b) Last interglacial temperature evolution—a model inter-comparison. Clim Past 9:605–619. doi:10.5194/cp-9-605-2013

    Article  Google Scholar 

  6. Bamber J, van den Broeke M, Ettema J, Lenaerts J, Rignot E (2012) Recent large increases in freshwater fluxes from Greenland into the north atlantic. Geophys Res Lett 39(19):L19–L501. doi:10.1029/2012GL052552

    Article  Google Scholar 

  7. Berger A, Loutre M (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10(4):297–317. doi:10.1016/0277-3791(91)90033-Q

    Article  Google Scholar 

  8. Bianchi GG, McCave IN (1999) Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 397:515–517. doi:10.1038/17362

    Article  Google Scholar 

  9. Blaschek M, Renssen H (2013) The Holocene thermal maximum in the Nordic Seas: the impact of Greenland ice sheet melt and other forcings in a coupled atmosphere–sea–ice–ocean model. Clim Past 9:1629–1643. doi:10.5194/cp-9-1629-2013

    Article  Google Scholar 

  10. Born A, Nisancioglu KH, Risebrobakken B (2011) Late Eemian warming in the Nordic Seas as seen in proxy data and climate models. Paleoceanography 26:PA2207. doi:10.1029/2010PA002027

  11. Brovkin V et al (2002) Carbon cycle, vegetation, and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Global Biogeochem Cycles. doi:10.1029/2001GB001662

  12. Dahl-Jensen D, Albert MR, Aldahan A et al (2013) Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493:489–494. doi:10.1038/nature11789

    Article  Google Scholar 

  13. Dalan F, Stone PH, Kamenkovich IV, Scott JR (2005) Sensitivity of the ocean’s climate to diapycnal diffusivity in an EMIC. Part I: equilibrium State. J Clim 18:2460–2481. doi:10.1175/JCLI3411.1

    Article  Google Scholar 

  14. Dickson R, Rudels B, Dye S et al (2007) Current estimates of freshwater flux through Arctic and subarctic seas. Prog Oceanogr 73:210–230. doi:10.1016/j.pocean.2006.12.003

    Article  Google Scholar 

  15. Drijfhout SS, Hazeleger W (2006) Changes in MOC and gyre-induced Atlantic Ocean heat transport. Geophys Res Lett 33:n/a–n/a. doi: 10.1029/2006GL025807

  16. Dutton A, Lambeck K (2012) Ice volume and sea level during the last interglacial. Science (80) 337:216. doi:10.1126/science.1205749

  17. Elliot M, Labeyrie L, Duplessy J-C (2002) Changes in North Atlantic deep-water formation associated with the Dansgaard-Oeschger temperature oscillations (60–10 ka). Quat Sci Rev 21:1153–1165. doi:10.1016/S0277-3791(01)00137-8

    Article  Google Scholar 

  18. Fichefet T (2003) Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century. Geophys Res Lett 30:1911. doi:10.1029/2003GL017826

    Article  Google Scholar 

  19. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609–12646

    Article  Google Scholar 

  20. Fichefet T, Maqueda MAM (1999) Modelling the influence of snow accumulation and snow–ice formation on the seasonal cycle of the Antarctic sea–ice cover. Clim Dyn 15:251–268

    Article  Google Scholar 

  21. Fleming K, Lambeck K (2004) Constraints on the Greenland ice sheet since the last glacial maximum from sea-level observations and glacial-rebound models. Quat Sci Rev 23:1053–1077. doi:10.1016/j.quascirev.2003.11.001

    Article  Google Scholar 

  22. Funder S, Goosse H, Jepsen H et al (2011) A 10,000-year record of Arctic Ocean sea–ice variability—view from the beach. Science 333:747–750. doi:10.1126/science.1202760

    Article  Google Scholar 

  23. Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158. doi:10.1038/35051500

    Article  Google Scholar 

  24. Goosse H, Fichefet T (1999) Importance of ice–ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337. doi:10.1029/1999JC900215

    Article  Google Scholar 

  25. Goosse H, Driesschaert E, Fichefet T, Loutre M-F (2007) Information on the early Holocene climate constrains the summer sea ice projections for the 21st century. Clim Past 3:683–692. doi:10.5194/cp-3-683-2007

    Article  Google Scholar 

  26. Goosse H, Brovkin V, Fichefet T et al (2010) Description of the earth system model of intermediate complexity LOVECLIM version 1.2. Geosci Model Dev Discuss 3:309–390. doi:10.5194/gmdd-3-309-2010

    Article  Google Scholar 

  27. Helsen MM, van de Berg WJ, van de Wal RSW et al (2013) Coupled regional climate—ice-sheet simulation shows limited Greenland ice loss during the Eemian. Clim Past 9:1773–1788. doi:10.5194/cp-9-1773-2013

    Article  Google Scholar 

  28. Hofmann M, Rahmstorf S, Schellnhuber HJ (2009) On the stability of the Atlantic meridional overturning circulation. Proc Natl Acad Sci USA 106:20584–20589. doi:10.1073/pnas.0909146106

    Article  Google Scholar 

  29. Hu A, Meehl GA, Han W, Yin J (2011) Effect of the potential melting of the Greenland ice sheet on the meridional overturning circulation and global climate in the future. Deep Sea Res Part II Top Stud Oceanogr 58:1914–1926. doi:10.1016/j.dsr2.2010.10.069

    Article  Google Scholar 

  30. Huybers P (2006) Early pleistocene glacial cycles and the integrated summer insolation forcing. Science 80(313):508–511. doi:10.1126/science.1125249

    Article  Google Scholar 

  31. Irvalı N, Ninnemann US, Galaasen EV et al (2012) Rapid switches in subpolar North Atlantic hydrography and climate during the Last Interglacial (MIS 5e). Paleoceanography. doi:10.1029/2011PA002244

    Google Scholar 

  32. Johns WE, Baringer MO, Beal LM et al (2011) Continuous, array-based estimates of Atlantic ocean heat transport at 26.5 N. J Clim 24:2429–2449. doi:10.1175/2010JCLI3997.1

    Article  Google Scholar 

  33. Joussaume S, Braconnot P (1997) Sensitivity of paleoclimate simulation results to season definitions. J Geophys Res Atmos 102:1943–1956. doi:10.1029/96JD01989

    Article  Google Scholar 

  34. Junge MM, Blender R, Fraedrich K et al (2005) A world without Greenland: impacts on the Northern hemisphere winter circulation in low- and high-resolution models. Clim Dyn 24:297–307. doi:10.1007/s00382-004-0501-2

    Article  Google Scholar 

  35. Kanzow T, Cunningham SA, Johns WE et al (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5 N. J Clim 23:5678–5698. doi:10.1175/2010JCLI3389.1

    Article  Google Scholar 

  36. Köhler P, Bintanja R, Fischer H et al (2010) What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat Sci Rev 29:129–145. doi:10.1016/j.quascirev.2009.09.026

    Article  Google Scholar 

  37. Kopp RE, Simons FJ, Mitrovica JX et al (2009) Probabilistic assessment of sea level during the last interglacial stage. Nature 462:863–867. doi:10.1038/nature08686

    Article  Google Scholar 

  38. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45(2) doi:10.1029/2004RG000166

  39. Lang B, Bedford A, Brooks SJ, Jones RT, Richardson N, Birks HJB, Marshall JD (2010) Early-holocene temperature variability inferred from chironomid assemblages at Hawes water, northwest England. Holocene 20(6):943–954. doi:10.1177/0959683610366157

    Article  Google Scholar 

  40. Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J Clim. doi:10.1175/1520-0442(2000)013<1809:L>2.0.CO;2

    Google Scholar 

  41. Loutre M, Berger A (2003) Marine isotope stage 11 as an analogue for the present interglacial. Glob Planetary Change 36(3):209–217. doi:10.1016/S0921-8181(02)00186-8

    Article  Google Scholar 

  42. Loutre MF, Mouchet A, Fichefet T et al (2011) Evaluating climate model performance with various parameter sets using observations over the recent past. Clim Past 7:511–526. doi:10.5194/cp-7-511-2011

    Article  Google Scholar 

  43. Lunt DJ, Noblet-Ducoudré N, Charbit S (2004) Effects of a melted Greenland ice sheet on climate, vegetation, and the cryosphere. Clim Dyn 23:679–694. doi:10.1007/s00382-004-0463-4

    Article  Google Scholar 

  44. Lunt DJ, Haywood AM, Schmidt GA et al (2010) Earth system sensitivity inferred from Pliocene modelling and data. Nat Geosci 3:60–64. doi:10.1038/ngeo706

    Article  Google Scholar 

  45. Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37:1–64. doi:10.1029/98RG02739

    Article  Google Scholar 

  46. Meehl GA, Stocker TF, Collins WD et al (2007) Global climate projections. In: Climate change 2007: The Physical Science Basis

  47. Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi:10.1007/s10584-011-0156-z

    Article  Google Scholar 

  48. Members CAPE (2006) Last interglacial Arctic warmth confirms polar amplification of climate change. Quat Sci Rev 25:1383–1400. doi:10.1016/j.quascirev.2006.01.033

    Article  Google Scholar 

  49. Milker Y, Rachmayani R, Weinkauf MFG et al (2013) Global and regional sea surface temperature trends during Marine Isotope Stage 11. Clim Past 9:2231–2252. doi:10.5194/cp-9-2231-2013

    Article  Google Scholar 

  50. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus A 50:348–367. doi:10.1034/j.1600-0870.1998.t01-1-00007.x

    Article  Google Scholar 

  51. Overpeck JT, Otto-Bliesner BL, Miller GH et al (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311(5768):1747–1750. doi:10.1126/science.1115159

    Article  Google Scholar 

  52. Palaeosens Project Members, Rohling EJ, Sluijs A et al (2012) Making sense of palaeoclimate sensitivity. Nature 491:683–691. doi:10.1038/nature11574

    Article  Google Scholar 

  53. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32:111–149. doi:10.1146/annurev.earth.32.082503.144359

    Article  Google Scholar 

  54. Pickart RS, Spall MA, Ribergaard MH et al (2003) Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424:152–156

    Article  Google Scholar 

  55. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811. doi:10.1007/s003820050144

    Article  Google Scholar 

  56. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214. doi:10.1038/nature01090

    Article  Google Scholar 

  57. Renssen H, Goosse H, Muscheler R et al (2006) Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Clim Past 2:79–90

    Article  Google Scholar 

  58. Renssen H, Seppä H, Heiri O et al (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414. doi:10.1038/ngeo513

    Article  Google Scholar 

  59. Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a High CO2 Climate. J Clim 18:3409–3427. doi:10.1175/JCLI3482.1

    Article  Google Scholar 

  60. Rignot E, Velicogna I, van den Broeke MR et al (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503. doi:10.1029/2011GL046583

    Article  Google Scholar 

  61. Robinson A, Calov R, Ganopolski A (2011) Greenland ice sheet model parameters constrained using simulations of the Eemian interglacial. Clim Past 7:381–396. doi:10.5194/cp-7-381-2011

    Article  Google Scholar 

  62. Roe G (2009) Feedbacks, timescales, and seeing red. Annu Rev Earth Planet Sci 37:93–115. doi:10.1146/annurev.earth.061008.134734

    Article  Google Scholar 

  63. Rossow WB (1996) International satellite cloud climatology project (ISCCP): documentation of new cloud datasets. NASA Goddard Space Flight Center

  64. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23710. doi:10.1029/2005GL024368

    Article  Google Scholar 

  65. Schneider B, Latif M, Schmittner A (2007) Evaluation of different methods to assess model projections of the future evolution of the atlantic meridional overturning circulation. J Clim 20:2121. doi:10.1175/JCLI4128.1

    Article  Google Scholar 

  66. Shakun JD, Carlson AE (2010) A global perspective on last glacial maximum to Holocene climate change. Quat Sci Rev 29:1801–1816. doi:10.1016/j.quascirev.2010.03.016

    Article  Google Scholar 

  67. Simpson MJR, Milne GA, Huybrechts P, Long AJ (2009) Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quat Sci Rev 28:1631–1657. doi:10.1016/j.quascirev.2009.03.004

    Article  Google Scholar 

  68. Srokosz M, Baringer M, Bryden H et al (2012) Past, present, and future changes in the Atlantic meridional overturning circulation. Bull Am Meteorol Soc 93:1663–1676. doi:10.1175/BAMS-D-11-00151.1

    Article  Google Scholar 

  69. Stone PH (2004) Climate prediction: the limits of ocean models. Washingt DC Am Geophys Union Geophys Monogr Ser 150:259–267. doi:10.1029/150GM20

    Google Scholar 

  70. Stone E, Lunt D (2013) The role of vegetation feedbacks on Greenland glaciation. Clim Dyn 40:2671–2686. doi:10.1007/s00382-012-1390-4

    Article  Google Scholar 

  71. Stouffer RJ, Yin J, Gregory JM et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387. doi:10.1175/JCLI3689.1

    Article  Google Scholar 

  72. Stroeve J, Holland MM, Meier W et al (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett. doi:10.1029/2007GL029703

    Google Scholar 

  73. Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33:L07711. doi:10.1029/2006GL025765

    Article  Google Scholar 

  74. Swingedouw D, Braconnot P, Delecluse P et al (2007) Quantifying the AMOC feedbacks during a 2 × CO2 stabilization experiment with land-ice melting. Clim Dyn 29:521–534. doi:10.1007/s00382-007-0250-0

    Article  Google Scholar 

  75. Swingedouw D, Mignot J, Braconnot P et al (2009) Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. J Clim 22:6377–6403. doi:10.1175/2009JCLI3028.1

    Article  Google Scholar 

  76. Tarasov L, Peltier WR (2003) Greenland glacial history, borehole constraints, and Eemian extent. J Geophys Res Solid Earth 108:n/a–n/a. doi:10.1029/2001JB001731

  77. Valdes P (2011) Built for stability. Nat Geosci 4:414–416. doi:10.1038/ngeo1200

    Article  Google Scholar 

  78. Van de Berg WJ, van den Broeke M, Ettema J et al (2011) Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nat Geosci 4:679–683. doi:10.1038/ngeo1245

    Article  Google Scholar 

  79. Weaver AJ, Sedláček J, Eby M et al (2012) Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys Res Lett. doi:10.1029/2012GL053763

    Google Scholar 

  80. Zeebe RE (2013) Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions. Proc Natl Acad Sci. doi:10.1073/pnas.1222843110

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Blaschek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 274 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blaschek, M., Bakker, P. & Renssen, H. The influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during past and future warm periods: a model study. Clim Dyn 44, 2137–2157 (2015). https://doi.org/10.1007/s00382-014-2279-1

Download citation

Keywords

  • Interglacials
  • Greenland ice sheet
  • Climate modelling
  • Climate sensitivity
  • AMOC
  • Sea ice