Skip to main content

Historical analogues of the recent extreme minima observed in the Atlantic meridional overturning circulation at 26°N

Abstract

Observations of the Atlantic meridional overturning circulation (AMOC) by the RAPID 26°N array show a pronounced minimum in the northward transport over the winter of 2009/10, substantially lower than any observed since the initial deployment in April 2004. It was followed by a second minimum in the winter of 2010/2011. We demonstrate that ocean models forced with observed surface fluxes reproduce the observed minima. Examining output from five ocean model simulations we identify several historical events which exhibit similar characteristics to those observed in the winter of 2009/10, including instances of individual events, and two clear examples of pairs of events which happened in consecutive years, one in 1969/70 and another in 1978/79. In all cases the absolute minimum, associated with a short, sharp reduction in the Ekman component, occurs in winter. AMOC anomalies are coherent between the Equator and 50°N and in some cases propagation attributable to the poleward movement of the anomaly in the wind field is observed. We also observe a low frequency (decadal) mode of variability in the anomalies, associated with the North Atlantic Oscillation (NAO). Where pairs of events have occurred in consecutive years we find that atmospheric conditions during the first winter correspond to a strongly negative Arctic Oscillation (AO) index. Atmospheric conditions during the second winter are indicative of a more regional negative NAO phase, and we suggest that this persistence is linked to re-emergence of sea surface temperature anomalies in the North Atlantic for the events of 1969/70 and 2009/10. The events of 1978/79 do not exhibit re-emergence, indicating that the atmospheric memory for this pair of events originates elsewhere. Observation of AO patterns associated with cold winters over northwest Europe may be indicative for the occurrence of a second extreme winter over northwest Europe.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Alexander MA, Deser C (1995) A mechanism for the recurrence of wintertime mid-latitude SST anomalies. J Phys Oceanogr 25:122–137

    Article  Google Scholar 

  2. Baehr J, Haak H, Alderson S, Cunningham SA, Jungclaus JH, Marotzke J (2007) Timely detection of changes in the meridional overturning circulation at 26N in the Atlantic. J Clim 20(23):5827–5841

    Article  Google Scholar 

  3. Baehr J, Cunningham SA, Haak H, Heimbach P, Kanzow T, Marotzke J (2009) Observed and simulated daily variability of the meridional overturning circulation at \(26.5\,^{\circ }\text{ N }\) in the Atlantic. Ocean Sci Discuss 5:575–589

    Article  Google Scholar 

  4. Balan Sarojini B, Gregory J, Tailleux R, Bigg GR, Blaker AT, Cameron DR, Edwards NR, Megann AP, Shaffrey L, Sinha B (2011) High frequency variability of the Atlantic meridional overturning circulation. Ocean Sci 7(4):471–486. doi:10.5194/os-7-471-2011

    Article  Google Scholar 

  5. Barnier B, Madec G, Penduff T, Molines JM, Treguier AM, Sommer JL, Beckmann A, Biastoch A, Bning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, de Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543–567

    Article  Google Scholar 

  6. Bellucci A, Gualdi S, Scoccimarro E, Navarra A (2008) NAO-ocean circulation interactions in a coupled general circulation model. Clim Dyn 31(7–8):759–777

    Article  Google Scholar 

  7. Blaker AT, Hirschi JJM, Sinha B, de Cuevas BA, Alderson SG, Coward AC, Madec G (2012) Large near-inertial oscillations of the Atlantic meridional overturning circulation. Ocean Model 42:50–56. doi:10.1016/j.ocemod.2011.11.008

    Article  Google Scholar 

  8. Brodeau L, Barnier B, Penduff T, Treguier AM, Gulev S (2010) An ERA 40 based atmospheric forcing for global ocean circulation models. Ocean Model 31(3–4):88–104

    Article  Google Scholar 

  9. Broeker WS (1987) The biggest chill. Nat Hist Mag 97:74–82

    Google Scholar 

  10. Bryden H, King BA, McCarthy GD, McDonagh EL (2014) Impact of a 30 % reduction in Atlantic meridional overturning during 2009–2010. Ocean Sci Discuss 11:789–810

    Article  Google Scholar 

  11. Buchan J, Hirschi JJM, Blaker AT, Sinha B (2014) Influence of North Atlantic sea surface temperature anomalies on the NAO in December 2010. Mon Weather Rev 142:922–932

    Article  Google Scholar 

  12. Cassou C, Deser C, Alexander MA (2007) Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J Clim 20:3510–3526. doi:10.1175/JCLI4202.1

    Article  Google Scholar 

  13. Chidichimo MP, Kanzow T, Cunningham SA, Johns WE, Marotzke J (2010) The contribution of eastern-boundary density variations to the Atlantic meridional overturning circulation at 26.5N. Ocean Sci 6:475–490

    Article  Google Scholar 

  14. Ciasto LM, Alexander MA, Deser C, England MH (2011) On the persistence of cold-season SST anomalies associated with the annular modes. J Clim 24(10):2500–2515

    Article  Google Scholar 

  15. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938. doi:10.1126/science.1141304

    Article  Google Scholar 

  16. D’Andrea F, Czaja A, Marshall J (2005) Impact of anomalous ocean heat transport on the North Atlantic oscillation. J Clim 18(23):4955–4969

    Article  Google Scholar 

  17. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hlm EV, Isaksen L, Kllberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  18. Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20(18):4751–4767

    Article  Google Scholar 

  19. Deshayes J, Treguier AM, Barnier B, Lecointre A, Sommer JL, Molines JM, Penduff T, Bourdalle-Badie R, Drillet Y, Garric G, Benshilla R, Madec G, Biastoch A, Boning CW, Scheinert M, Coward AC, Hirschi JJM (2013) Oceanic hindcast simulations at high resolution suggest that the Atlantic MOC is bistable. Geophys Res Lett 40(12):3069–3073. doi:10.1002/grl.50534

    Article  Google Scholar 

  20. Dickson RR, Brown J (1994) The production of North Atlantic deep water: sources, rates, and pathways. J Geophys Res Oceans 99(C6):12,319–12,341. doi:10.1029/94JC00530

    Article  Google Scholar 

  21. DRAKKAR Group (2007) Eddy-permitting ocean circulation hindcasts of past decades. Clivar Exch 12(3):8–10

    Google Scholar 

  22. Duchez A, Frajka-Williams E, Castro N, Hirschi JJM, Coward A (2014a) Seasonal to interannual variability in density around the Canary Islands and their influence on the Atlantic meridional overturning circulation at 26N. J Gephys Res Oceans 119. doi:10.1002/2013JC009416

  23. Duchez A, Hirschi JJM, Cunningham SA, Blaker AT, Bryden HL, de Cuevas BA, Atkinson CP, McCarthy GD, Frajka-Williams E, Rayner D, Smeed D, Mizielinski MS (2014b) A new index for the Atlantic Meridional overturning circulation at 26N. J Clim. doi:10.1175/JCLI-D-13-00052.1

  24. Fletcher CG, Hardiman SC, Kushnir PJ (2009) The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J Clim 22:1208–1222

    Article  Google Scholar 

  25. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408:453–457. doi:10.1038/35044048

    Article  Google Scholar 

  26. Gastineau G, D’Andrea F, Frankignoul C (2013) Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal time scales. Clim Dyn 40(9–10):2311–2330. doi:10.1007/s00382-012-1333-0

    Article  Google Scholar 

  27. Gong G, Entekhabi D, Cohen J (2003) Modeled Northern Hemisphere Winter Climate Response to Realistic Siberian Snow Anomalies. Journal of Climate 16:3917–3931. doi:10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2

  28. Gong G, Entekhabi D, Cohen J, Robinson D (2004) Sensitivity of atmospheric response to modeled snow anomaly characteristics. J Geophys Res 109(D06107). doi:10.1029/2003JD004160

  29. Grist JP, Josey SA, Marsh R, Good SA, Coward AC, de Cuevas BA, Alderson SG, New AL, Madec G (2010) The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability. Ocean Dyn 60(4):771–790. doi:10.1007/s10236-010-0292-4

    Article  Google Scholar 

  30. Grist JP, Josey SA, Marsh R (2012) Surface estimates of the Atlantic overturning in density space in an eddy-permitting ocean model. J Geophys Res 117(C06012). doi:10.1029/2011JC007752

  31. Heape R, Hirschi JJM, Sinha B (2013) Asymmetric response of European pressure and temperature anomalies to NAO positive and NAO negative winters. Weather 68(3):73–80. doi:10.1002/wea.2068

    Article  Google Scholar 

  32. Hermanson L, Eade R, Robinson NH, Dunstone NJ, Andrews MB, Knight JR, Scaife AA, Smith DM (2014) Forecast cooling of the Atlantic subpolar gyre and associated impacts. Geophys Res Lett. doi:10.1002/2014GL060420

  33. Hirschi J, Marotzke J (2007) Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J Phys Oceanogr 37:743–763

    Article  Google Scholar 

  34. Hirschi J, Baehr J, Marotzke J, Stark J, Cunningham S, Beismann JO (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophys Res Lett 30(7):1413. doi:10.1029/2002GL016776

    Article  Google Scholar 

  35. Hirschi J, Blaker AT, Sinha B, de Cuevas B, Alderson SG, Coward AC, Madec G (2013) Chaotic variability of the meridional overturning circulation on subannual to interannual timescales. Ocean Sci 9:3191–3238. doi:10.5194/osd-9-3191-2012

    Article  Google Scholar 

  36. Hirschi JJM, Sinha B (2007) Negative NAO and cold Eurasian winters: how exceptional was the winter of 1962/1963? Weather 62(2):43–48. doi:10.1002/wea.34

    Article  Google Scholar 

  37. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  38. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles: historical and real-time data. J Mar Syst 65:158–175. doi:10.1016/j.jmarsys.2005.11.019

    Article  Google Scholar 

  39. Johns WE, Baringer MO, Beal LM, Cunningham SA, Kanzow T, Bryden HL, Hirschi JJM, Marotzke J, Meinen C, Shaw B, Curry R (2011) Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J Clim 24(10):2429–2449. doi:10.1175/2010JCLI3997.1

  40. Jourdan D, Balopoulos E, Garcia-Fernandez M, Maillard C (1998) Objective analysis of temperature and salinity historical data set over the mediterranean basin. Technical report IEEE

  41. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  42. Kanzow T, Johnson HL, Marshall DP, Cunningham SA, Hirschi JJM, Mujahid A, Bryden HL, Johns WE (2009) Basinwide integrated volume transports in an eddy-filled ocean. J Phys Oceanogr 39:3091–3110. doi:10.1175/2009JPO4185.1

    Article  Google Scholar 

  43. Kanzow T, Cunningham SA, Johns WE, Hirschi JJM, Barringer MO, Meinen CS, Chidichimo MP, Atkinson CP, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5N. J Clim 23:5678–5698

    Article  Google Scholar 

  44. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45(RG2001). doi:10.1029/2004RG000166

  45. Large WG, Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. Technical Report TN-460+STR(NCAR)

  46. Large WG, Yeager SG (2008) The global climatology of an interannually varying air–sea flux data set. Clim Dyn. doi:10.1007/s00382-008-0441-3

  47. Levitus S, Conkright M, Boyer TP, O’Brian T, Antonov J, Stephens C, Johnson LSD, Gelfeld R (1998) World ocean database 1998. Technical report NESDIS 18, NOAA Atlas

  48. L’Heureux M, Butler A, Jha B, Kumar A, Wang W (2010) Unusual extremes in the negative phase of the Arctic Oscillation during 2009. Geophys Res Lett 37(L10704). doi:10.1029/2010GL043338

  49. Lumpkin R, Speer K (2007) Global ocean meridional overturning. J Phys Oceanogr 37:2550–2562

    Article  Google Scholar 

  50. Luo D, Zhu Z, Ren R, Zhong L, Wang C (2010) Spatial pattern and zonal shift of the North Atlantic oscillation. Part I: a dynamical interpretation. J Atmos Sci 67:2805–2826. doi:10.1175/2010JAS3345.1

    Article  Google Scholar 

  51. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation. Institut Pierre-Simon Laplace (IPSL), France 27:1288–1619

  52. Maidens A, Arribas A, Scaife AA, Maclachlan C, Peterson D, Knight J (2013) The influence of surface forcings on prediction of the North Atlantic oscillation regime of Winter 2010–2011. Mon Weather Rev 141(11):3801–3813. doi:10.1175/MWR-D-13-00033.1

  53. Marshall J, Johnson H, Goodman J (2000) A study of the interaction of the North Atlantic oscillation with ocean circulation. J Clim 14:1399–1421. doi:10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2

  54. McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Cunningham SA (2012) Observed interannual variability of the Atlantic meridional overturning circulation at 26.5N. Geophys Res Lett 39(L19609). doi:10.1029/2012GL052933

  55. NCAR (2012a) The climate data guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based). http://climatedataguide.ucar.edu/guidance/hurrell-north-atlantic-oscillation-nao-index-station-based

  56. NCAR (2012b) The climate data guide: Hurrell wintertime SLP-based Northern Annular Mode (NAM) Index. http://climatedataguide.ucar.edu/guidance/hurrell-wintertime-slp-based-northern-annular-mode-nam-index

  57. NOAA (2013) 2009/2010 Cold season. http://www.ncdc.noaa.gov/special-reports/2009-2010-cold-season.html

  58. Osborn TJ (2011) Winter 2009/2010 temperatures and a record breaking North Atlantic Oscillation index. Weather 66:19–21

    Article  Google Scholar 

  59. Peings Y, Saint-Martin D, Douville H (2012) A numerical sensitivity study of the influence of siberian snow on the northern annular mode. J Clim 25:592–607. doi:10.1175/JCLI-D-11-00038.1

    Article  Google Scholar 

  60. Quartly GD, de Cuevas BA, Coward AC (2013) Mozambique channel eddies in GCMs: a question of resolution and slippage. Ocean Model 63:56–67

    Article  Google Scholar 

  61. Rayner D, Hirschi JJM, Kanzow T, Johns WE, Wright PG, Frajka-Williams E, Bryden HL, Meinen CS, Barringer MO, Marotzke J, Beal LM, Cunningham SA (2011) Monitoring the Atlantic meridional overturning circulation. Deep Sea Res Part II Top Stud Oceanogr 58(17–18):1744–1753

    Article  Google Scholar 

  62. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite sst analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  63. Rhines PB, Häkkinen S (2003) Is the oceanic heat transport in the North Atlantic irrelevant to the climate in Europe? ASOF Newsl 1:13–17

    Google Scholar 

  64. Sevellec F, Fedorov AV (2013) The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J Clim 26:2160–2183. doi:10.1175/JCLI-D-11-00023.1

    Article  Google Scholar 

  65. Sevellec F, Hirschi JJM, Blaker AT (2013) On the super-inertial resonance of the Atlantic meridional overturning circulation. J Phys Oceanogr 43:2661–2672. doi:10.1175/JPO-D-13-092.1

    Article  Google Scholar 

  66. Sinha B, Blaker AT, Hirschi JJM, Bonham S, Brand M, Josey S, Smith R, Marotzke J (2012) Mountain ranges favour vigorous Atlantic meridional overturning. Geophys Res Lett 39(L02705):7. doi:10.1029/2011GL05048

  67. Sinha B, Topliss B, Blaker AT, Hirschi JJM (2013) A numerical model study of the effects of interannual timescale wave propagation on the predictability of the Atlantic meridional overturning circulation. J Geophys Res. doi:10.1029/2012JC008334

  68. Sonnewald M, Hirschi JJM, Marsh R (2013) Oceanic dominance of interannual subtropical North Atlantic heat content variability. Ocean Sci Discuss 10:27–53. doi:10.5194/osd-10-27-2013

    Article  Google Scholar 

  69. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high quality Arctic Ocean. J Clim 14:2079–2087

    Article  Google Scholar 

  70. Taws SL (2013) Seasonal re-emergence of sea surface temperature anomalies in the North Atlantic: an observational and ocean model study. PhD Thesis, University of Southampton

  71. Taws SL, Marsh R, Wells NC, Hirschi JJM (2011) Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO. Geophys Res Lett 38(L20601). doi:10.1029/2011GL048978

  72. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  73. Timmerman A, Goosse H, Madec G, Fichefet T, Ethe C, Dulire V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea-ice ocean model. Ocean Model 8:175–201

    Article  Google Scholar 

  74. U.S. Department of Commerce (2006) U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center: 2-minute Gridded Global Relief Data (ETOPO2v2). http://www.ngdc.noaa.gov/mgg/global/etopo2.html

  75. Wallace JM (2000) North Atlantic Oscillation/annular mode: two paradigms-one phenomenon. Q J R Meterol Soc 126(564):791–805. doi:10.1002/qj.49712656402

    Article  Google Scholar 

  76. Zhao J, Johns W (2014) Wind-forced interannual variability of the Atlantic meridional overturning circulation at 26.5N. J Geophys Res Oceans 119:2403–2419. doi:10.1002/2013JC009407

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NERC funded RAPID-WATCH project VALOR (NE/G007772/1) and was also part of the DRAKKAR project. Data from the RAPID-WATCH MOC monitoring project are funded by the Natural Environment Research Council and are freely available from www.noc.soton.ac.uk/rapidmoc. Sarah Taws was funded by a NERC Quota Studentship, with added support from the UK Met Office. NCEP Reanalysis Derived data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. NAO Index Data was provided by the Climate Analysis Section, NCAR, Boulder, USA. We thank two anonymous reviewers for their useful and constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam T. Blaker.

Appendix: Decomposition of the AMOC

Appendix: Decomposition of the AMOC

Ocean models typically output the northward velocity for each grid box, which allows us to exactly compute the AMOC (\(\varPsi\)) in the model, i.e.

$$\begin{aligned} \varPsi (y,z) = \int _{z}^{0} \int _{x_{w}}^{x_{e}} v(x,y,z') \quad dx dz'. \end{aligned}$$
(1)

In order to make comparisons with the observations taken at 26°N we may also compute components of the transport corresponding to those measured by the 26°N observing array, namely the Florida Straits transport, \(\varPsi _{FST}\), the geostrophic (or thermal wind) transport, \(\varPsi _{geo}\) and the Ekman transport, \(\varPsi _{ekm}\).

\(\varPsi _{FST}\) is computed by integrating the meridional velocity, \(v\), through the Florida Straits (between Florida, \(x_{w}\), and the Bahamas, \(x_{Bh}\)), and from the maximum depth of the Florida Straits \(H_F\) to the surface,

$$\begin{aligned} \varPsi _{FST} = \int _{H_F}^{0} \int _{x_{w}}^{x_{Bh}} v(x,z') \quad dx dz'. \end{aligned}$$
(2)

\(z'\) is a dummy integration variable. \(\varPsi _{geo}\), the baroclinic geostrophic component arising from zonal density gradients across the Atlantic basin is

$$\begin{aligned} \varPsi _{geo}(z) = \int _{z}^{0} \int _{x_{Bh}}^{x_e} (v_{geo} - \bar{v}_{comp}) \quad dxdz', \end{aligned}$$
(3)

where \(v_{geo}\) and \(\bar{v}_{comp}\) are

$$\begin{aligned} v_{geo}(x,z) = -\frac{g}{\rho ^{*} f} \int _{-H(x)}^{z} \frac{\partial \rho }{\partial x} \quad dz' \end{aligned}$$
(4)

and

$$\begin{aligned} \bar{v}_{comp}(x,z) = \frac{1}{H(x)} \int _{-H(x)}^{0} v_{geo}(x,z') \quad dz' + \bar{v}_{FST} \end{aligned}$$
(5)

respectively, \(x_{e}\) is the easternmost extent of the Atlantic (i.e. Africa), \(H(x)\) is the maximum depth of the basin as a function of longitude, \(g\) being the Earth’s gravitational acceleration, \(\rho\) the in-situ density, \(f\) the Coriolis parameter, and \(\rho ^{*}\) a reference density. \(\bar{v}_{FST}\) is

$$\begin{aligned} \bar{v}_{FST}= \frac{\varPsi _{FST}}{A} \end{aligned}$$
(6)

with \(A\) being the cross-sectional area of the Atlantic basin east of the Bahamas.

We define \(\varPsi _{ekm}\), the Ekman (wind driven) component, here as a function of latitude and depth compensated by a section mean return flow to ensure no net transport,

$$\begin{aligned} \varPsi _{ekm}(y,z) = \int _{-H_{max}(y)}^{z} \int _{x_w}^{x_e} (v_{ekm} - \bar{v}_{ekm}) \quad dxdz', \end{aligned}$$
(7)

where \(v_{ekm}\) and \(\bar{v}_{ekm}\) are

$$\begin{aligned} v_{ekm} = -\frac{1}{(\rho ^{*} f L \varDelta _{z})} \int _{x_w}^{x_e} \tau _{x} dx \end{aligned}$$
(8)

and

$$\begin{aligned} \bar{v}_{ekm} = -\frac{1}{(\rho ^{*} f A)} \int _{x_w}^{x_e} \tau _{x} dx \end{aligned}$$
(9)

respectively, \(L\) being the basin width, \(\varDelta _{z}\) the Ekman depth, and \(H_{max}(y)\) the latitudinally dependent maximum depth of the basin. The Ekman depth, \(\varDelta _{z}\), which defines the base of the Ekman layer in which the wind driven transport occurs we chose to be 100 m. The choice of \(\varDelta _{z}\) does not strongly affect the resulting overturning profile. Note that the compensation term associated with the Ekman transport could equally be added to \(\bar{v}_{comp}\), but that it will be small compared with the other terms.

Therefore at \(26.5^{\circ}\hbox {N}\) the AMOC transport can be considered as the sum of these components plus a residual term, \(\varPsi _{res}\),

$$\begin{aligned} \varPsi = \varPsi _{FST} + \varPsi _{geo} + \varPsi _{ekm} + \varPsi _{res}. \end{aligned}$$
(10)

where \(\varPsi _{res}\) can be obtained by rearranging Eq. (10). If averaged over a time longer than a few cycles of the local inertial period the residual term is small (order 1 Sv), and can be ignored. It should be noted, however, that this term can dominate the AMOC variability at near-inertial time scales (Blaker et al. 2012; Sevellec et al. 2013).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blaker, A.T., Hirschi, J.JM., McCarthy, G. et al. Historical analogues of the recent extreme minima observed in the Atlantic meridional overturning circulation at 26°N. Clim Dyn 44, 457–473 (2015). https://doi.org/10.1007/s00382-014-2274-6

Download citation

Keywords

  • AMOC
  • Minimum
  • Events
  • RAPID
  • Model
  • Observations
  • SST anomalies
  • Re-emergence