AMOC response to global warming: dependence on the background climate and response timescale

Abstract

This paper investigates the response of the Atlantic meridional overturning circulation (AMOC) to a sudden doubling of atmospheric CO2 in the National Center for Atmospheric Research Community Climate System Model version 3, with a focus on differences under different background climates. The findings reveal that the evolution of the AMOC differs significantly between the modern climate and the last glacial maximum (LGM). In the modern climate, the AMOC decreases (by 25 %, 4 Sv) in the first 100 years and then recovers slowly (by 6 %, 1 Sv) by the end of the 1,500-year simulation. At the LGM, the AMOC also weakens (by 8 %, 1 Sv) in the initial 90 years, but then recovers, first rapidly (by 30 %, 4 Sv) over the following 300 years, and then slowly (by 13 %, 1.6 Sv) during the remainder of the integration. These results suggest that the responses of the AMOC under both climates have a similar initial rapid weakening period of ~100 years and a final slow strengthening period over 1,000 years long. However, additional intermediate period of ~300 years does occur for the LGM, with rapid intensification in the AMOC. Analyses suggest that the rapid intensification is triggered and sustained primarily by a coupled sea ice–ocean feedback: the reduction of meltwater flux in the northern North Atlantic—associated with the remarkable sea-ice retreat at the LGM—intensifies the AMOC and northward heat transport, which, in turn, causes further sea-ice retreat and more reduction of meltwater. These processes are insignificant under modern conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Banderas R, Ávarez-Solas J, Montoya M (2012) Role of CO2 and Southern Ocean winds in glacial abrupt climate change. Clim Past 8(3):1011–1021. doi:10.5194/cp-8-1011-2012

    Article  Google Scholar 

  2. Bitz CM, Chiang JCH, Cheng W, Barsugli JJ (2007) Rates of thermohaline recovery from freshwater pulses in modern, last glacial maximum, and greenhouse warming climates. Geophys Res Lett 34(7):L07708. doi:10.1029/2006GL029237

    Google Scholar 

  3. Brady E, Otto-Bliesner B (2011) The role of meltwater-induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations. Clim Dyn 37(7–8):1517–1532. doi:10.1007/s00382-010-0925-9

    Article  Google Scholar 

  4. Bryan FO, Danabasoglu G, Nakashiki N, Yoshida Y, Kim D-H, Tsutsui J, Doney SC (2006) Response of the North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J Clim 19(11):2382–2397. doi:10.1175/jcli3757.1

    Article  Google Scholar 

  5. Bryan FO, Nakashiki N, Yoshida Y, Maruyama K (2007) Response of the meridional overturning circulation during differing pathways toward greenhouse gas stabilization. In: Ocean circulation: mechanisms and impacts—past and future changes of meridional overturning. American Geophysical Union, pp 351–363. doi:10.1029/173gm22

  6. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Clim 19(11):2122–2143. doi:10.1175/JCLI3761.1

    Article  Google Scholar 

  7. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1029–1136

  8. Danabasoglu G, Gent PR (2009) Equilibrium climate sensitivity: is it accurate to use a slab ocean model? J Clim 22(9):2494–2499. doi:10.1175/2008jcli2596.1

    Article  Google Scholar 

  9. Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3(3):343–360. doi:10.1029/PA003i003p00343

    Article  Google Scholar 

  10. Eisenman I, Bitz CM, Tziperman E (2009) Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography 24(4):PA4209. doi:10.1029/2009pa001778

    Article  Google Scholar 

  11. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 741–866

  12. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408(6811):453–457. doi:10.1038/35044048

    Article  Google Scholar 

  13. Gersonde R, Crosta X, Abelmann A, Armand L (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG last glacial maximum—a circum-Antarctic view based on siliceous microfossil records. Quat Sci Rev 24(7–9):869–896. doi:10.1016/j.quascirev.2004.07.015

    Article  Google Scholar 

  14. Gildor H, Tziperman E (2003) Sea-ice switches and abrupt climate change. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 361(1810):1935–1944. doi:10.1098/rsta.2003.1244

    Article  Google Scholar 

  15. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32(12):L12703. doi:10.1029/2005gl023209

    Article  Google Scholar 

  16. He F (2011) Simulating transient climate evolution of the last deglaciation with CCSM3. Dissertation, University of Wisconsin-Madison, Madison, USA

  17. He F, Shakun JD, Clark PU, Carlson AE, Liu Z, Otto-Bliesner BL, Kutzbach JE (2013) Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature 494(7435):81–85. doi:10.1038/nature11822

    Article  Google Scholar 

  18. Hieronymus M, Nycander J (2012) The buoyancy budget with a nonlinear equation of state. J Phys Oceanogr 43(1):176–186. doi:10.1175/JPO-D-12-063.1

    Article  Google Scholar 

  19. Hu A, Otto-Bliesner BL, Meehl GA, Han W, Morrill C, Brady EC, Briegleb B (2008) Response of thermohaline circulation to freshwater forcing under present-day and LGM Conditions. J Clim 21(10):2239–2258. doi:10.1175/2007jcli1985.1

    Article  Google Scholar 

  20. Hu A, Meehl GA, Han W, Yin J (2009) Transient response of the MOC and climate to potential melting of the Greenland ice sheet in the 21st century. Geophys Res Lett 36(10):L10707. doi:10.1029/2009gl037998

    Article  Google Scholar 

  21. Jayne SR, Marotzke J (1999) A destabilizing thermohaline circulation-atmosphere-sea ice feedback. J Clim 12(2):642–651. doi:10.1175/1520-0442(1999)012<0642:adtcas>2.0.co;2

    Article  Google Scholar 

  22. Klocker A, McDougall TJ (2010) Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J Phys Oceanogr 40(8):1690–1709. doi:10.1175/2010JPO4303.1

    Article  Google Scholar 

  23. Knorr G, Lohmann G (2007) Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem Geophys Geosyst 8(12):Q12006. doi:10.1029/2007gc001604

    Article  Google Scholar 

  24. Kutzbach JE, He F, Vavrus SJ, Ruddiman WF (2013) The dependence of equilibrium climate sensitivity on climate state: applications to studies of climates colder than present. Geophys Res Lett 40(14):3721–3726. doi:10.1002/grl.50724

    Article  Google Scholar 

  25. Liu Z (2006) Glacial thermohaline circulation and climate: forcing from the north or south? Adv Atmos Sci 23(2):199–206. doi:10.1007/s00376-006-0199-7

    Article  Google Scholar 

  26. Liu Z, Shin S-I, Webb RS, Lewis W, Otto-Bliesner BL (2005) Atmospheric CO2 forcing on glacial thermohaline circulation and climate. Geophys Res Lett 32(2):L02706. doi:10.1029/2004gl021929

    Google Scholar 

  27. Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R, Clark PU, Carlson AE, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J (2009) Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325(5938):310–314. doi:10.1126/science.1171041

    Article  Google Scholar 

  28. Liu W, Liu Z, Hu A (2013) The stability of an evolving Atlantic meridional overturning circulation. Geophys Res Lett 40(8):1562–1568. doi:10.1002/grl.50365

    Article  Google Scholar 

  29. Lohmann G, Gerdes RD (1998) Sea ice effects on the sensitivity of the thermohaline circulation. J Clim 11(11):2789–2803. doi:10.1175/1520-0442(1998)011<2789:sieots>2.0.co;2

    Article  Google Scholar 

  30. Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR, Herguera JC, Hirschi JJ, Ivanova EV, Kissel C, Marchal O, Marchitto TM, McCave IN, McManus JF, Mulitza S, Ninnemann U, Peeters F, Yu E-F, Zahn R (2007) Atlantic meridional overturning circulation during the last glacial maximum. Science 316(5821):66–69. doi:10.1126/science.1137127

    Article  Google Scholar 

  31. McManus JF, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–837. doi:10.1038/nature02494

    Article  Google Scholar 

  32. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Tebaldi C, Sanderson BN, Lamarque J-F, Conley A, Strand WG, White JB (2012) Climate system response to external forcings and climate change projections in CCSM4. J Clim 25(11):3661–3683. doi:10.1175/JCLI-D-11-00240.1

    Article  Google Scholar 

  33. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26(17):6287–6308. doi:10.1175/JCLI-D-12-00572.1

    Article  Google Scholar 

  34. Oka A, Hasumi H, Abe-Ouchi A (2012) The thermal threshold of the Atlantic meridional overturning circulation and its control by wind stress forcing during glacial climate. Geophys Res Lett 39(9):L09709. doi:10.1029/2012gl051421

    Google Scholar 

  35. Otto-Bliesner BL, Hewitt CD, Marchitto TM, Brady E, Abe-Ouchi A, Crucifix M, Murakami S, Weber SL (2007) Last glacial maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys Res Lett 34(12):L12706. doi:10.1029/2007GL029475

    Article  Google Scholar 

  36. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32(1):111–149. doi:10.1146/annurev.earth.32.082503.144359

    Article  Google Scholar 

  37. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43(2):353–367. doi:10.1023/a:1005474526406

    Article  Google Scholar 

  38. Robinson LF, Adkins JF, Keigwin LD, Southon J, Fernandez DP, Wang S-L, Scheirer DS (2005) Radiocarbon variability in the Western North Atlantic during the last deglaciation. Science 310(5753):1469–1473. doi:10.1126/science.1114832

    Article  Google Scholar 

  39. Saenko OA, Eby M, Weaver AJ (2004) The effect of sea-ice extent in the North Atlantic on the stability of the thermohaline circulation in global warming experiments. Clim Dyn 22(6–7):689–699. doi:10.1007/s00382-004-0414-0

    Google Scholar 

  40. Sarnthein M, Pflaumann U, Weinelt M (2003) Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates. Paleoceanography 18(2):1047. doi:10.1029/2002PA000771

    Google Scholar 

  41. Schmitt RW, Bogden PS, Dorman CE (1989) Evaporation minus precipitation and density fluxes for the North Atlantic. J Phys Oceanogr 19(9):1208–1221. doi:10.1175/1520-0485(1989)019<1208:empadf>2.0.co;2

    Article  Google Scholar 

  42. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32(23):L23710. doi:10.1029/2005gl024368

    Article  Google Scholar 

  43. Shin S-I, Liu Z, Otto-Bliesner BL, Kutzbach JE, Vavrus SJ (2003a) Southern Ocean sea-ice control of the glacial North Atlantic thermohaline circulation. Geophys Res Lett 30(2):1096. doi:10.1029/2002gl015513

    Article  Google Scholar 

  44. Shin SI, Liu Z, Otto-Bliesner B, Brady E, Kutzbach J, Harrison S (2003b) A simulation of the last glacial maximum climate using the NCAR-CCSM. Clim Dyn 20(2–3):127–151. doi:10.1007/s00382-002-0260-x

    Google Scholar 

  45. Speer K, Tziperman E (1992) Rates of water mass formation in the North Atlantic Ocean. J Phys Oceanogr 22(1):93–104. doi:10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2

    Article  Google Scholar 

  46. Stocker TF, Knutti R, Plattner GK (2001) The future of the thermohaline circulation—a perspective. In: The oceans and rapid climate change: past, present, and future, vol 126. Geophys. Monogr. Ser. AGU, Washington, DC, pp 277–293. doi:10.1029/GM126p0277

  47. Stouffer RJ (2004) Time scales of climate response. J Clim 17(1):209–217. doi:10.1175/1520-0442(2004)017<0209:tsocr>2.0.co;2

    Article  Google Scholar 

  48. Stouffer RJ, Manabe S (2003) Equilibrium response of thermohaline circulation to large changes in atmospheric CO2 concentration. Clim Dyn 20(7–8):759–773. doi:10.1007/s00382-002-0302-4

    Article  Google Scholar 

  49. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19(8):1365–1387. doi:10.1175/jcli3689.1

    Article  Google Scholar 

  50. Swart NC, Fyfe JC (2012) Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys Res Lett 39(16):L16711. doi:10.1029/2012GL052810

    Google Scholar 

  51. Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33(7):L07711. doi:10.1029/2006gl025765

    Google Scholar 

  52. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2×CO2 stabilization experiment with land-ice melting. Clim Dyn 29(5):521–534. doi:10.1007/s00382-007-0250-0

    Article  Google Scholar 

  53. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning stream functions for the global ocean. J Clim 16(19):3213–3226. doi:10.1175/1520-0442(2003)016<3213:dmosft>2.0.co;2

    Article  Google Scholar 

  54. Toggweiler JR, Russell J (2008) Ocean circulation in a warming climate. Nature 451(7176):286–288. doi:10.1038/nature06590

    Article  Google Scholar 

  55. Voss R, Mikolajewicz U (2001) Long-term climate changes due to increased CO2 concentration in the coupled atmosphere-ocean general circulation model ECHAM3/LSG. Clim Dyn 17(1):45–60. doi:10.1007/pl00007925

    Article  Google Scholar 

  56. Weaver AJ, Eby M, Kienast M, Saenko OA (2007) Response of the Atlantic meridional overturning circulation to increasing atmospheric CO2: sensitivity to mean climate state. Geophys Res Lett 34(5):L05708. doi:10.1029/2006gl028756

    Google Scholar 

  57. Weaver AJ, Sedláček J, Eby M, Alexander K, Crespin E, Fichefet T, Philippon-Berthier G, Joos F, Kawamiya M, Matsumoto K, Steinacher M, Tachiiri K, Tokos K, Yoshimori M, Zickfeld K (2012) Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys Res Lett 39(20):L20709. doi:10.1029/2012gl053763

    Google Scholar 

  58. Wood RA, Vellinga M, Thorpe R (2003) Global warming and thermohaline circulation stability. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 361(1810):1961–1975. doi:10.1098/rsta.2003.1245

    Article  Google Scholar 

  59. Yang J, Neelin JD (1993) Sea–ice interaction with the thermohaline circulation. Geophys Res Lett 20(3):217–220. doi:10.1029/92GL02920

    Article  Google Scholar 

  60. Yang H, Zhu J (2011) Equilibrium thermal response timescale of global oceans. Geophys Res Lett 38(14):L14711. doi:10.1029/2011gl048076

    Google Scholar 

  61. Yeager SG, Shields CA, Large WG, Hack JJ (2006) The low-resolution CCSM3. J Clim 19(11):2545–2566. doi:10.1175/jcli3744.1

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Feng He for performing the transient experiments (TraCE-GHG) and Dr. Esther Brady for helpful comments that improved the quality of this paper. We gratefully acknowledge the constructive comments from  two anonymous reviewers. This work is supported by the National Natural Science Foundation of China (NSFC 41130105), the Ministry of Science and Technology of China (MOST 2012CB955200), the U.S. National Science Foundation and the Department of Energy.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jiang Zhu or Zhengyu Liu.

Appendices

Appendix 1: A detailed heat and freshwater budget

To quantitatively evaluate the importance of different processes and feedbacks in changing the AMOC in doubling CO2 experiments, we analyse the heat/freshwater budget for both the northern and southern box in the upper Atlantic Ocean. The time-varying equation for the volume-integrated heat/freshwater budget is

$$\frac{{dM_{\text{S}} }}{dt} = M_{\text{F}} - {\text{div}}M_{\text{T}} + R$$
(3)

where \(M_{\text{S}}\) is the heat/freshwater storage, \(M_{\text{F}}\) the area-integrated surface flux, \({\text{div}}M_{\text{T}}\) divergence of the transport between the northern and southern boundary of the box, and \(R\) is the residual, including diffusion and convection with the lower ocean. The transport across certain latitude \(M_{\text{T}}\) can be further separated into the meridional part (\(M_{\text{MOC}}\)) and the azonal part (\(M_{\text{az}}\)). Take the freshwater transport as an example,

$$M_{\text{MOC}} = - \frac{1}{{S_{0} }}\int {\overline{v} (z) \cdot \left( {\left\langle {\overline{S} } \right\rangle - S_{0} } \right) \cdot {\text{d}}z}$$
(4)
$$M_{\text{az}} = - \frac{1}{{S_{0} }}\int {\overline{{v(z)^{{\prime }} \cdot S^{{\prime }} }} \cdot {\text{d}}z}$$
(5)

where the reference salinity S 0 is the averaged salinity of the Atlantic Ocean, 34.7 and 36.5 for the present day and the LGM, respectively. \(\overline{v} \left( z \right)\) and \(\left\langle {\overline{S} } \right\rangle\) denote the zonally integrated northward velocity and averaged salinity, and \(v\left( z \right)^{{\prime }}\) and \(S^{{\prime }}\) represent the deviations from their zonal means.

The changes in heat storage, surface flux and convergence of transport in the northern and southern box during each stage are listed in Table 3. For both the MOD-2CO2 and LGM-2CO2, the increase of heat storage (0.04 PW) in the northern box during the initial weakening stage is mainly attributable to the increase of surface heat flux (0.10–0.13 PW). The convergence of heat transport is negative (−0.08 to −0.11 PW), indicating a negative feedback between the strength of the AMOC and heat transport. It works as follows: a weakening of the AMOC reduces the northward heat transport, leads to a cooling, and promotes the deep convection. It is interesting to note that during the intermediate strengthening stage in LGM-2CO2, the convergence of heat transport is positive (0.06 PW) because of the enhanced AMOC, and simultaneously the surface heat flux decreases significantly (−0.05 PW) due to the reduction of the sea-ice insulating effect and the increase of ocean temperature. The former, again, suggests a negative feedback between the AMOC and heat transport, while the latter indicates a positive feedback between the AMOC and the surface heat flux. This positive feedback can act through two different loops: Firstly, intensification in the AMOC transports more heat northward, leads to a warming and enhanced heat loss to the atmosphere. Secondly, a strengthening of the AMOC and heat transport can cause more sea-ice retreat and enhanced heat loss through the sea-ice insulating effect.

Table 3 Changes in the heat storage, surface flux and convergence of transport (units: 10−1 PW) in the northern (35°N–65°N) and southern box (0°N–30°N) in the upper North Atlantic Ocean in the doubling CO2 experiments

The changes in freshwater storage, surface flux and convergence of transport in the northern and southern box during each stage are listed in Table 4. The most important process is the decrease of surface freshwater flux in the northern box (−0.06 Sv for the intermediate stage) caused by the reduction of meltwater flux (Fig. 11b). It could form a positive sea ice–ocean coupled feedback to intensify the AMOC. At the intermediate stage, the meridional part of freshwater transport (−0.12 Sv) acts to increase salinity in the northern box and stabilize the AMOC (a positive feedback) in LGM-2CO2; however, its role is overwhelmed by the azonal transport (0.15 Sv). The decrease of surface freshwater flux (−0.03 to −0.04 PW) in the southern box due to the enhanced evaporation in both climates during the initial weakening stage is another positive feedback, although overpowered by the negative feedback between the AMOC and surface heat flux.

Table 4 Changes in the freshwater storage, surface flux and convergence of transport (10−1 Sv) in the northern (35°N–65°N) and southern box (0°N–30°N) in the upper North Atlantic Ocean in the doubling CO2 experiments

Appendix 2: Confirmation from the EOF analysis

In order to confirm the crucial role of salinity changes in enhancing the N–S density contrast and, in turn, the intensification of the AMOC in LGM-2CO2, we use the empirical orthogonal function (EOF) analysis to detect the major modes of changes in zonal mean density, temperature and salinity in the doubling CO2 experiments (Fig. 13). In MOD-2CO2, the EOF1 of zonal mean density (Fig. 13a) resembles the EOF1 of zonal mean temperature (Fig. 13d) very well with an N–S symmetric decrease of density, except for the northern polar region. This quasi-symmetric change of density agrees with insignificant changes in the AMOC at long timescales in MOD-2CO2. In sharp contrast, in LGM-2CO2, the evolution of the zonal mean density in the Atlantic Ocean is dominated by an N–S asymmetric mode (EOF1) with a significant increase of density in the upper 2,000 m and 40°S northward Atlantic Ocean and a comparable decrease in the deep and Southern Ocean (Fig. 13b). EOF1 can explain 92 % of the total variance and the corresponding PC1 (Fig. 13c) suggests that this mode has timescale longer than 1,000 years. This asymmetric mode can produce a stronger NADW and a weaker AABW through the increase of the N–S density contrast and the decrease of vertical stratification in the Atlantic Ocean, which is consistent with the strengthening of AMOC after the initial weakening in LGM-2CO2 (also shown in the initial stage of PC1). In order to find out, the relative contribution of the changes in temperature and salinity, we carry out the same EOF analysis for the zonal mean temperature and salinity in the Atlantic Ocean (Fig. 13e, h). The first EOF of temperature, which can explain 84 % of the total variance, shows the signal of global warming due to the doubling of CO2. The warming in the upper and mid Atlantic Ocean is larger, which suggests the temperature change makes a negative contribution to the N–S density contrast. The first EOF of salinity, explaining 94 % of the total variance, resembles the asymmetric mode very well, indicating that the change of zonal mean salinity dominates the asymmetric change of zonal mean density in the Atlantic Ocean in LGM-2CO2.

Fig. 13
figure13

First EOF of the Atlantic zonal mean potential density in the doubling CO2 experiments for the modern climate (a) and LGM (b). The corresponding PCs for modern climate (red) and LGM (blue) are shown in c, d, e and f are the same, but for the zonal mean temperature, g, h and i are for the zonal mean salinity. All the EOFs are normalized, such that the magnitude is unit. The variance explained by the first EOF of the potential density, temperature and salinity are 74, 89 and 25 % for the modern climate, and 92, 84 and 94 % for LGM, respectively

The EOF analysis is coherent with the diagnosing of the trend of zonal mean potential density (Sects. 5.15.3) and confirms that the contribution from salinity changes plays the dominant role in increasing the N–S density contrast and strengthening the AMOC in LGM-2CO2 at centennial-millennial timescales. Therefore, we can exclude the role of Atlantic surface heat flux. Combining with the diagnose of the freshwater budget for the North Atlantic in Sect. 5.4, we could find, once again, that the reorganization of the Atlantic surface freshwater flux is of essential importance in strengthening the AMOC in LGM-2CO2. EOF analysis (Fig. 13h) also demonstrates that the increase of salinity in the north could be coupled with a decrease of salinity in the south at millennial timescale.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Liu, Z., Zhang, J. et al. AMOC response to global warming: dependence on the background climate and response timescale. Clim Dyn 44, 3449–3468 (2015). https://doi.org/10.1007/s00382-014-2165-x

Download citation

Keywords

  • Atlantic meridional overturning circulation
  • Carbon dioxide
  • Last glacial maximum
  • Sea ice
  • Timescale