Climate Dynamics

, Volume 42, Issue 9–10, pp 2565–2583 | Cite as

Impact of improved assimilation of temperature and salinity for coupled model seasonal forecasts

  • Mei ZhaoEmail author
  • Harry H. Hendon
  • Oscar Alves
  • Yonghong Yin


We assess the impact of improved ocean initial conditions for predicting El Niño-Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) using the Bureau of Meteorology’s Predictive Ocean Atmosphere Model for Australia (POAMA) coupled seasonal prediction model for the period 1982–2006. The new ocean initial conditions are provided by an ensemble-based analysis system that assimilates subsurface temperatures and salinity and which is a clear improvement over the previous optimal interpolation system which used static error covariances and was univariate (temperature only). Hindcasts using the new ocean initial conditions have better skill at predicting sea surface temperature (SST) variations associated with ENSO than do the hindcasts initialized with the old ocean analyses. The improvement derives from better prediction of subsurface temperatures and the largest improvements come during ENSO–IOD neutral years. We show that improved prediction of the Niño3.4 SST index derives from improved initial depiction of the thermocline and halocline in the equatorial Pacific but as lead time increases the improved depiction of the initial salinity field in the western Pacific become more important. Improved ocean initial conditions do not translate into improved skill for predicting the IOD but we do see an improvement in the prediction of subsurface temperatures in the Indian Ocean (IO). This result reflects that the coupling between subsurface and surface temperature variations is weaker in the IO than in the Pacific, but coupled model errors may also be limiting predictive skill in the IO.


Seasonal forecast Prediction skill of ENSO Data assimilation 



Support for this study was provided by the Western Australian Marine Science Institution and the Managing Climate Variability Program, managed by the Grains Research and Development Corporation, under the project “Improving forecast accuracy through improved ocean initialisation”. We thank Dr. Debbie Hudson for providing atmospheric initial conditions and Dr. Guo Liu for computing support.


  1. Alves O, Wang G, Zhong A, Smith N, Tseitkin F, Warren G, Schiller A, Godfrey S, Meyers G (2003) POAMA: Bureau of Meteorology operational coupled model seasonal forecast system. In: Proceedings of the National Drought Forum, Brisbane, pp 49–56. Available from DPI Publications, Department of Primary Industries, GPO Box 46, Brisbane, Qld 4001, AustraliaGoogle Scholar
  2. Balmaseda M, Anderson D (2009) Impact of initialisation strategies and observations on seasonal forecast skill. Geophys Res Lett 36:L01701. doi: 10.1029/2008GL035561 CrossRefGoogle Scholar
  3. Balmaseda MA, Vidard A, Anderson D (2008) The ECMWF ocean analysis system: ORA-S3. Mon Weather Rev 136:3018–3034CrossRefGoogle Scholar
  4. Balmaseda MA, Alves OJ, Arribas A, Awaji T, Behringer DW, Ferry N, Fujii Y, Lee T, Rienecker M, Rosati T, Stammer D (2009) Ocean initialization for seasonal forecasts. Oceanography 22:154–159CrossRefGoogle Scholar
  5. Behringer DW (2007) The global ocean data assimilation system at NCEP. In: 11th symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 87th annual meeting, Henry B. Gonzales Convention Center, San Antonio, Texas, 12 ppGoogle Scholar
  6. Boyer TP, Stephens C, Antonov JI, Conkright ME,. Locarnini RA, O’Brien TD, Garcia HE (2002) World Ocean Atlas 2001, vol 2: Salinity. In: Levitus S (ed) NOAA Atlas NESDIS 50. U. S. Government Printing Office, Washington, 165 pp., CD-ROMsGoogle Scholar
  7. Burgers G, Balmaseda MA, Vossepoel FC, van Oldenborgh GJ, van Leeuwen PJ (2002) Balanced ocean-data assimilation near the equator. J Phys Oceanogr 32:2509–2519CrossRefGoogle Scholar
  8. Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecasts of El Niño. Nature 321:827–832CrossRefGoogle Scholar
  9. Gill AE (1982) Atmosphere–ocean dynamics. Academic Press, London, p 662Google Scholar
  10. Hendon HH (2003) Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. J Clim 16:1775–1790CrossRefGoogle Scholar
  11. Hendon HH, Wang G (2009) Seasonal prediction of the Leeuwin Current using the POAMA dynamical seasonal forecast model. Clim Dyn. doi: 10.1007/s00382-009-0570-3 Google Scholar
  12. Hudson D, Alves O (2007) The impact of land–atmosphere initialisation on dynamical seasonal prediction. CAWCR Research Report No. 133, Bur. Met., Melbourne, Australia, 4 ppGoogle Scholar
  13. Hudson D, Alves O, Hendon H, Wang G (2011) The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim Dyn 36:1155–1171. doi: 10.1007/s00382-010-0763-9 CrossRefGoogle Scholar
  14. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65:158–175CrossRefGoogle Scholar
  15. Ji M, Leetmaa A (1997) Impact of data assimilation on ocean initialization and El Niño prediction. Mon Weather Rev 125:742–753CrossRefGoogle Scholar
  16. Ji M, Behringer DW, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: the coupled model. Mon Weather Rev 126:1022–1034CrossRefGoogle Scholar
  17. Jin EK, Kinter JL III, Wang B, Park CK, Kang LS, Kirtman BP, Kug JS, Kumar A, Luo JJ, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn 31:647–664. doi: 10.1007/s00382-008-0397-3 CrossRefGoogle Scholar
  18. Kirtman BP, Shukla J, Huang B, Zhu Z, Schneider EK (1997) Multiseasonal prediction with a coupled tropical ocean global atmosphere system. Mon Weather Rev 125:89–808Google Scholar
  19. Kleeman R, Moore AM, Smith NR (1995) Assimilation of subsurface thermal data into an intermediate tropical coupled ocean–atmosphere model. Mon Weather Rev 123:3103–3113CrossRefGoogle Scholar
  20. Latif M, Sterl A, Maier-Reimer E, Junge MM (1993) Structure and predictability of the El Niño/Southern Oscillation phenomenon in a coupled ocean–atmosphere general circulation model. J Clim 6:700–708CrossRefGoogle Scholar
  21. Luo JJ, Masson S, Behera S, Yamagata T (2008) Extended ENSO predictions using a fully coupled ocean-atmosphere model. J Clim 21:84–93CrossRefGoogle Scholar
  22. McPhaden MJ, Busalacchi AJ, Cheney R, Donguy J, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT, Niiler PP, Picaut J, Reynolds RW, Smith N, Takeuchi K (1998) The tropical ocean-global atmosphere observing system: a decade of progress. J Geophys Res 103(C7):14169–14240CrossRefGoogle Scholar
  23. Pacanowski RC (1995) MOM2 documentation user’s guide and reference manual. Version 1.0, GFDL Tech. Rep. 3, 232 ppGoogle Scholar
  24. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  25. Rosati A, Miyakoda K, Gudgel R (1997) The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon Weather Rev 125:754–772CrossRefGoogle Scholar
  26. Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, van den Dool HM, Pan HL, Moorthi S, Behringer D, Stokes D, White G, Lord S, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Clim 15:3483–3517CrossRefGoogle Scholar
  27. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  28. Schiller A, Godfrey JS, McIntosh PC, Smith NR, Alves O, Wang G, and Fiedler R (2002) A new version of the Australian community ocean model for seasonal climate prediction. SCIRO Marine Research Report No. 240Google Scholar
  29. Schneider EK, Huang BH, Zhu ZX, DeWitt DG, Kinter JL III, Kirtman BP, Shukla J (1999) Ocean data assimilation, initialization, and predictions of ENSO with a coupled GCM. Mon Weather Rev 127:1187–1207CrossRefGoogle Scholar
  30. Smith NR, Blomley JE, Meyers G (1991) A univariate statistical interpolation scheme for subsurface thermal analysis in tropical oceans. Prog Oceanogr 28:219–256CrossRefGoogle Scholar
  31. Stephens C, Antonov JI, Boyer TP, Conkright ME, Locarnini RA, O’Brien TD, Garcia HE (2002) World Ocean Atlas 2001, vol 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 49. U.S. Government Printing Office, Wash., D.C., 167 pp, CD-ROMsGoogle Scholar
  32. Stockdale TN, Anderson D, Balmaseda MA, Doblas-Reyes F, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37:455–471. doi: 10.1007/s00382-010-0947-3 CrossRefGoogle Scholar
  33. Wang GM, Kleeman R, Smith N, Tseitkin F (2002) The BMRC coupled general circulation model ENSO forecast system. Mon Weather Rev 130:975–991CrossRefGoogle Scholar
  34. Wang GM, Hudson D, Yin Y, Alves O, Hendon H, Langford S, Liu G, Tseitkin F (2011) POAMA-2 SST skill assessment and beyond. CAWCR Res Lett 6. Sandery PA, Leeuwenburg T, Wang G, Hollis AJ, Day KA (eds).
  35. Xue Y, Balmaseda MA, Boyer T, Ferry N, Good S, Ishikawa I, Rienecker M, Rosati T, Yin Y, Kumar A (2011) Comparative analysis of upper ocean heat content variability from ensemble operational ocean analyses. US CLIVAR Var 9(1):7–10Google Scholar
  36. Yin YH, Alves O, Oke PR (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon Weather Rev 139:786–808. doi: 10.1175/2010MWR3419.1 CrossRefGoogle Scholar
  37. Zhang S, Harrison MJ, Rosati A, Wittenberg AT (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135:3541–3564CrossRefGoogle Scholar
  38. Zhao M, Hendon H (2009) Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Q J R Meteorol Soc 135:337–352. doi: 10.1002/qj.370 CrossRefGoogle Scholar
  39. Zhao M, Hendon HH, Alves O, Yin Y, Anderson D (2013) Impact of salinity constraints on the simulated mean state and variability in a coupled seasonal forecast model. Mon Weather Rev 141(1):388–402CrossRefGoogle Scholar
  40. Zhong A, Colman R, Smith N, Naughton M, Rikus L, Puri K, Tseitkin F (2001) Ten-year AMIP1 climatologies from versions of the BMRC atmospheric model. BMRC Res Rep 83, 33 ppGoogle Scholar
  41. Zhong A, Hendon HH, Alves O (2005) Indian Ocean variability and its association with ENSO in a global coupled model. J Clim 18:3634–3649CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mei Zhao
    • 1
    Email author
  • Harry H. Hendon
    • 1
  • Oscar Alves
    • 1
  • Yonghong Yin
    • 1
  1. 1.Centre for Australian Weather and Climate Research (CAWCR)MelbourneAustralia

Personalised recommendations