Patterns of decadal-scale Arctic warming events in simulated climate

Abstract

Pronounced positive decadal-scale temperature anomalies occurred in the Arctic region in the first half of the twentieth century, an episode known as the early twentieth century warming (ETCW). Analyzing a 3,000-year unperturbed climate simulation performed with the Max Planck Institute Earth System Model, we demonstrate that internal variability of the Northern Hemisphere climate system is sufficient to reproduce warm events matching the observed ETCW. We perform a superposed epoch analysis on simulated data and identify 26 Arctic warming episodes compatible with the ETCW. The simulated events reproduce, in their ensemble average, magnitude as well as spatial and temporal extent of the observed ETCW. In individual realizations, the ETCW-like events indicate that different patterns of internally generated decadal Arctic warming are possible, including pan-Arctic warming events. We investigate the dynamics that typically lead to the simulated warming events: positive oceanic heat transport anomalies that form in the North Atlantic initialize the warming events and trigger an ocean-ice-albedo feedback in the Barents Sea region. The consequent reduction in sea-ice extent leads to enhanced multi-year surface warming through strengthened ocean heat release to the atmosphere. The oceanic heat transport anomalies reduce to pre-event levels around the year of the maximum warming. However, the warming events typically lasts for another 5–7 years until the sea-ice extent recovers to pre-event conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Bengtsson L, Semenov VA, Johannessen OM (2004) The early twentieth-century warming in the Arctic—a possible mechanism. J Clim 17(20):4045–4057

    Article  Google Scholar 

  2. Bjerknes J (1964) Atlantic air-sea interaction advances in geophysics, vol 10. Academic Press, New York, pp 1–82

    Google Scholar 

  3. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232. doi:10.1038/nature10946

    Article  Google Scholar 

  4. Brovkin V, Lorenz SJ, Jungclaus J, Raddatz T, Timmreck C, Reick CH, Segschneider J, Six K (2010) Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium. Tellus B, no–no, http://dx.doi.org/10.1111/j.1600-0889.2010.00471.x

  5. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi:10.1029/2007GL031972

    Article  Google Scholar 

  6. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100 year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190

    Article  Google Scholar 

  7. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk M, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  8. Goosse H, Holland MM (2005) Mechanisms of decadal Arctic climate variability in the Community Climate System Model, Version 2 (CCSM2). J Clim 18(17):3552–3570

    Article  Google Scholar 

  9. Hegerl G, Zwiers FW, Braconnot P, Gillett N, Luo Y, Orsini JM, Nicholls N, Penner J, Stott P (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, chap. Understanding and Attributing Climate Change, 663–745. Cambridge University Press, http://www.ipcc.ch/ipccreports/ar4-wg1.htm

  10. Hegerl G, Luterbacher J, Gonzalez-Rouco F, Tett SFB, Crowley T, Xoplaki E (2011) Influence of human and natural forcing on European seasonal temperature. Nat Geosci 4:99–103. doi:10.1038/NGEO1057

    Article  Google Scholar 

  11. Hibler W (1979) A dynamic-thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  12. Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012) Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A 64 (11595). doi:10.3402/tellusa.v64i0.11595

  13. Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A 56(5):328–348

    Article  Google Scholar 

  14. Jungclaus JH, Koenigk T (2010) Low-frequency variability of the arctic climate: the role of oceanic and atmospheric heat transport variations. Clim Dyn 34(2–3):265–279

    Article  Google Scholar 

  15. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031

    Article  Google Scholar 

  16. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19(16):3952–3972

    Article  Google Scholar 

  17. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737

    Article  Google Scholar 

  18. Kinnard C, Zdanowicz CM, Fisher DA, Isaksson E, de Vernal A, Thompson LG (2011) Reconstructed changes in Arctic sea ice over the past 1,450 years. Nature 479:509–512. doi:10.1038/nature10581

    Article  Google Scholar 

  19. Kuzmina S, Johannessen OM, Bengtsson L, Aniskina OG, Bobylev L (2008) High northern latitude surface air temperature: comparison of existing data and creation of a new gridded dataset 1900–2000. Tellus A 60:289–304

    Article  Google Scholar 

  20. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5(2):91–127

    Article  Google Scholar 

  21. Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34:L24501. doi:10.1029/2007GL032043

    Article  Google Scholar 

  22. Miller GH, Alley RB, Brigham-Grette J, Fitzpatrick JJ, Polyak L, Serreze MC, White JWC (2010) Arctic amplification: can the past constrain the future? Quat Sci Rev 29(15–16):1779–1790

    Article  Google Scholar 

  23. Notz D, Marotzke J (2012) Observations reveal external driver for Arctic sea-ice retreat. Geophys Res Lett 39:L08502. doi:10.1029/2012GL051094

    Article  Google Scholar 

  24. Overland JE, Wang M (2005) The third Arctic climate pattern: 1930s and early 2000s Geophys Res Lett 32:L23808

    Google Scholar 

  25. Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of arctic sea ice. Tellus A 62(1):1–9

    Article  Google Scholar 

  26. Overland JE, Spillane MC, Percival DB, Wang M, Mofjeld HO (2004) Seasonal and regional variation of pan-Arctic surface air temperature over the instrumental record. J Clim 17:3263–3282

    Article  Google Scholar 

  27. Overland JE, Wang M, Salo S (2008) The recent Arctic warm period. Tellus A 60:589–597

    Article  Google Scholar 

  28. Overland JE, Wood KR, Wang MY (2011) Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea. Polar Res 30(15787). doi:10.3402/polar.v30i0.15787

  29. Polyakov IV, Alexeev VA, Bhatt US, Polyakova EI, Zhang XD (2010) North Atlantic warming: patterns of long-term trend and multidecadal variability. Clim Dyn 34(2–3):439–457

    Article  Google Scholar 

  30. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn 29(6):565–574

    Article  Google Scholar 

  31. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407

    Article  Google Scholar 

  32. Roeckner E, et al (2003) The atmosphere general circulation model ECHAM5, part 1: model description. Technical report no. 349: 127 pp, Max-Planck-Institut für Meteorologie

  33. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464(7293):1334–1337

    Article  Google Scholar 

  34. Semenov VA (2007) Structure of temperature variability in the high latitudes of the northern hemisphere. Izvestiya Atmos Ocean Phys 43(6):687–695

    Article  Google Scholar 

  35. Semenov VA, Latif M (2012) The early twentieth century warming and winter Arctic sea ice. Cryosphere 6:1231–1237. doi:10.5194/tc-6-1231-2012

    Article  Google Scholar 

  36. Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planetary Chang 77:85–96

  37. Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Chang 76(3–4):241–264

    Article  Google Scholar 

  38. Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based arctic amplification. Cryosphere 3(1):11–19

    Article  Google Scholar 

  39. Sorteberg A, Kvingedal B (2006) Atmospheric forcing on the Barents Sea winter ice extent. J Clim 19(19):4772–4784

    Article  Google Scholar 

  40. Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300. doi:10.1029/98GL00950

    Article  Google Scholar 

  41. Wang MY, Overland JE, Kattsov V, Walsh E, Zhang XD, Pavlova T (2007) Intrinsic versus forced variation in coupled climate model simulations over the Arctic during the twentieth century. J Clim 20(6):1093–1107. doi:10.1175/JCLI4043.1

    Article  Google Scholar 

  42. Wetzel P, Maier-Reimer E, Botzet M, Jungclaus JH, Keenlyside N, Latif M (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. J Clim 19(16):3973–3987

    Article  Google Scholar 

  43. Whitaker JS, Compo GP, Wei X, Hamill TM (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Weather Rev 132:1190–1200

    Article  Google Scholar 

  44. Wood KR, Overland JE (2010) Early 20th century Arctic warming in retrospect. Int J Climatol 30:1269–1279. doi:10.1002/joc.1973

    Google Scholar 

  45. Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37:L14702. doi:10.1029/2010GL043717

    Article  Google Scholar 

  46. Zhang R, Delworth TL, Sutton R, Hodson DLR, Dixon KW, Held IM, Kushnir Y, Marshall J, Ming Y, Msadek R, Robson J, Rosati AJ, Ting M, Veechi GA (2013) Have aerosols caused the observed atlantic multidecadal variability? J Atmos Sci 70:1135–1144. doi:10.1175/JAS-D-12-0331.1

    Article  Google Scholar 

  47. Zhang X, Sorteberg A, Zhang J, Gerdes R, Comiso JC (2008) Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys Res Lett 35:L22701

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge T. Mauritsen, J. Marotzke and two anonymous reviewers for their comments and recommendations that helped to improve the manuscript. JHJ has received funding from the European Union 7th Framework Programme (FP7 2007–2013) under Grant agreement No. 308299 (NACLIM project). DZ received funding from the Federal Ministry for Education and Research in Germany (BMBF) through the research program “MiKlip” (FKZ:01LP1158A). AB took part in the course “Advanced Scientific Writing” held at the MPI by J. Marotzke and D. Murphy, which helped to further improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Beitsch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beitsch, A., Jungclaus, J.H. & Zanchettin, D. Patterns of decadal-scale Arctic warming events in simulated climate. Clim Dyn 43, 1773–1789 (2014). https://doi.org/10.1007/s00382-013-2004-5

Download citation

Keywords

  • Decadal natural climate variability
  • Arctic climate
  • Superposed epoch analysis
  • Coupled atmosphere–ocean–sea-ice processes
  • Early twentieth century warming