Advertisement

Climate Dynamics

, Volume 42, Issue 9–10, pp 2639–2654 | Cite as

Relative humidity history on the Batang–Litang Plateau of western China since 1755 reconstructed from tree-ring δ18O and δD

  • Wenling An
  • Xiaohong LiuEmail author
  • Steven W. Leavitt
  • Guobao Xu
  • Xiaomin Zeng
  • Wenzhi Wang
  • Dahe Qin
  • Jiawen Ren
Article

Abstract

We measured the annual variation in the stable isotopes of oxygen (δ18O) and hydrogen (δD) in tree rings of Abies georgei on the Batang–Litang Plateau of western China. Although correlations between tree-ring δ18O and δD are relatively weak in semi-arid regions, we found a strong correlation between the δ18O and δD time series from 1755 to 2009 under the wetter environment. Tree-ring δ18O and δD time series are both significantly and negatively correlated with moisture conditions from June to August, including relative humidity and total precipitation, respectively, from 1960 to 2009. Considering the difference in low-frequency domain between the two isotopes, the relative humidity histories from June to August, reconstructed separately from the tree-ring δ18O and δD data with instrumental climate data, reveal a persistent drying trend since 1850s, especially since the early 1970s. There is an obvious offset of reconstructed relative humidity from tree-ring δ18O and δD in the period 1755–1820, despite the strong similarity in their 21-year moving averages. The decreased relative humidity since the 1850s may be associated with the thermal contrast between the sea surface temperature of the Indian Ocean and the Qinghai-Tibetan Plateau, which determines the strength of moisture transfer via the Indian summer monsoon.

Keywords

Tree rings Dendrochronology δ18δD Relative humidity Atmospheric circulations Batang–Litang Plateau 

Notes

Acknowledgments

This research was supported by the Knowledge Innovation Project of the Chinese Academy Sciences (KZCX2-YW-QN308), by the National Natural Science Foundation of China (41171167), and by the self-determination project of the State Key Laboratory of Cryospheric Sciences (SKLCS09-03). We thank Prof. Ningsheng Qin for assistance with collecting the meteorological data. We thank Prof. Qibing Zhang for providing the tree-ring δ18O time series of Bomi. We thank the journal’s anonymous reviewers and the journal’s editor, whose comments and suggestions were helpful in improving the quality of this paper.

Supplementary material

382_2013_1937_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1223 kb)

References

  1. An WL, Liu XH, Leavitt SW, Sun WZ, Wang WZ, Wang Y, Xu GB, Chen T, Ren JW, Qin DH (2012) Specific climatic signals recorded in earlywood and latewood δ18O of tree rings in southwestern China. Tellus B 64:18703. doi: 10.3402/tellusb.v64i0.18703 CrossRefGoogle Scholar
  2. Ballantyne AP, Baker PA, Chambers JQ, Villalba R, Argollo J (2011) Regional differences in South American monsoon precipitation inferred from the growth and isotopic composition of tropical trees. Earth Interact 15(5):1–35. doi: 10.1175/2010EI277.1 CrossRefGoogle Scholar
  3. Bansod SD, Yin Z, Lin Z, Zhang X (2003) Thermal field over Tibetan Plateau and Indian summer monsoon rainfall. Int J Climatol 23:1589–1605. doi: 10.1002/joc.953 CrossRefGoogle Scholar
  4. Barbour MM (2007) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94CrossRefGoogle Scholar
  5. Barbour MM, Farquhar GD (2000) Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ 23:473–485. doi: 10.1046/j.1365-3040.2000.00575.x CrossRefGoogle Scholar
  6. Borella S, Leuenberger M (1998) Reducing uncertainties in δ13C analysis of tree-rings: pooling, milling and cellulose extraction. J Geophys Res 103:19519–19526. doi: 10.1029/98JD01169 CrossRefGoogle Scholar
  7. Bräuning A (1999) Dendroclimatological potential of drought-sensitive tree stands in Southern Tibet for the reconstruction of the monsoonal activity. IAWA J 20(3):325–338CrossRefGoogle Scholar
  8. Brienen RJW, Helle G, Pons TL, Guyot JL, Gloor M (2012) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability. PNAS 109(42):16957–16962. doi: 10.1073/pnas.1205977109
  9. Cernusak LA, Farquhari GD, Pate JS (2005) Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum, Eucalyptus globules. Tree Physiol 25:129–146CrossRefGoogle Scholar
  10. Chang DHS (1981) The vegetation zonation of the Tibetan Plateau. Mt Res Dev 1(1):29–48CrossRefGoogle Scholar
  11. Charles CD, Hunter DE, Fairbanks RG (1997) Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science 277:925–928CrossRefGoogle Scholar
  12. Clark AJ, Cole JA, Webster PJ (2000) Indian Ocean SST and Indian summer rainfall: predictive relationship and their decadal variability. J Clim 13:2503–2519. doi: 10.1175/1520-0442(2000)013<2503:IOSAIS>2.0.CO;2 CrossRefGoogle Scholar
  13. Clift PD, Plumb RA (2008) The Asian monsoon: causes, history and effects. Cambridge University Press, Cambridge, p 32CrossRefGoogle Scholar
  14. Cook ER, Holmes RL (1986) Users manual for program Arstan. In: Holmes RL, Adams RK, Fritts HC (eds) Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin. Tucson, Laboratory of Tree-Ring Research, University of Arizona, Chronology Series 6, pp 50–65Google Scholar
  15. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468. doi: 10.1111/j.2153-3490.1964.tb00181.x.1964.tb00181.x CrossRefGoogle Scholar
  16. Deniro MJ, Epstein S (1981) Isotopic composition of cellulose from aquatic organisms. Geochimica et Cosmochimica Acta 45:1885–1894Google Scholar
  17. Dongmann G, Nuernberg HW, Foerstel H, Wagener K (1974) On the enrichment of H218O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52CrossRefGoogle Scholar
  18. Duan KQ, Yao TD, Wang NL, Tian LD, Xu BQ (2008) The difference in precipitation variability between the North and South Tibetan Plateaus (in Chinese). J Glaciol Geocryol 30(5):726–732Google Scholar
  19. Dykoski CA, Edwards RL, Cheng H, Yuan DX, Cai YJ, Zhang ML, Lin YS, Qing JM, An ZS, Revenaugh J (2005) A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233:71–86. doi: 10.1016/j.epsl.2005.01.036 CrossRefGoogle Scholar
  20. Epstein S, Thompson P, Yapp CJ (1977) Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198:1209–1215. doi: 10.1126/science.198.4323.1209 CrossRefGoogle Scholar
  21. Esper J, Frank DC, Battipaglia G, Büntgen U, Holert C, Treydte K, Siegwolf R, Saurer M (2010) Low-frequency noise in δ13C and δ18O tree ring data: a case study of Pinus uncinata in the Spanish Pyrenees. Global Biogeochem Cycles 24:4018. doi: 10.1029/2010GB003772 CrossRefGoogle Scholar
  22. Fan ZX, Bräuning A, Cao KF (2008) Annual temperature reconstruction in the central Hengduan Mountains, China, as deduced from tree rings. Dendrochronologia 26:97–107. doi: 10.1016/j.dendro.2008.01.003 CrossRefGoogle Scholar
  23. Feng S, Hu Q (2005) Regulation of Tibetan Plateau heating on variation of Indian summer monsoon in the last two millennia. Geophys Res Lett 32(2):L02702. doi: 10.1029/2004GL021246 CrossRefGoogle Scholar
  24. Feng XH, Cui HT, Tang KL, Conkey LE (1999) Tree-ring δD as an indicator of Asian Monsoon intensity. Quat Res 51:262–266. doi: 10.1006/qres.1999.2039 CrossRefGoogle Scholar
  25. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  26. Gessler A, Brandes E, Buchmann N, Helle G, Rennenberg H, Barnard RL (2009) Tracing carbon and oxygen isotopes signals from newly assimilated sugars in the leaves to tree-ring archive. Plant Cell Environ 32:780–795. doi: 10.1111/j.1365-3040.2009.01957.x CrossRefGoogle Scholar
  27. Gou XH, Deng Y, Chen FH, Yang MX, Fang KY, Gao LL, Yang T, Zhang F (2010) Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years. Chin Sci Bull 55(36):4179–4186. doi: 10.1007/s11434-010-4215-z CrossRefGoogle Scholar
  28. Green JW (1963) Wood cellulose. In: Whistler RL (ed) Methods in carbohydrate chemistry. Academic Press, New York, pp 9–12Google Scholar
  29. Grießinger J, Bräuning A, Helle G, Thomas A, Schleser G (2011) Late Holocene Asian summer monsoon variability reflected by δ18O in tree-rings from Tibetan junipers. Geophys Res Lett 38:L03701. doi: 10.1029/2010GL045988 CrossRefGoogle Scholar
  30. Haupt M, Weigl M, Grabner M, Boettger T (2011) A 400-year reconstruction of July relative air humidity for the Vienna region (eastern Austria) based on carbon and oxygen stable isotope ratios in tree-ring latewood cellulose of oaks (Quercus petraea Matt. Liebl.). Clim Change 105:243–262. doi: 10.1007/s10584-010-9862-1 CrossRefGoogle Scholar
  31. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  32. Kress A, Saurer M, Siegwolf RTW, Frank DC, Esper J, Bugmann H (2010) A 350 year drought reconstruction from Alpine tree-ring stable isotopes. Glob Biogeochem Cycles 24. doi: 10.1029/2009GB003613
  33. Laumer W, Andreu L, Helle G, Schleser GH, Wieloch T, Wissel H (2009) A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. Rapid Commun Mass Spectrom 23:1934–1940. doi: 10.1002/rcm.4105 CrossRefGoogle Scholar
  34. Leavitt SW (2010) Tree-ring C–H–O isotope variability and sampling. Sci Total Environ 408(22):5244–5253. doi: 10.1016/j.scitotenv.2010.07.057 CrossRefGoogle Scholar
  35. Liang EY, Shao XM, Qin NS (2008) Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau. Global Planet Change 61:313–320. doi: 10.1016/j.gloplacha.2007.10.008 CrossRefGoogle Scholar
  36. Libby LM, Pandolfi LJ, Payton PH, Marshall J, Becker B, Giertz-Sienbenlist V (1976) Isotopic tree thermometers. Nature 261:284–288CrossRefGoogle Scholar
  37. Liñán ID, Gutiérrez E, Helle G, Heinrich I, Andreu-Hayles L, Planells O, Leuenberger M, Bürger C, Schleser G (2011) Pooled versus separate measurements of tree-ring stable isotopes. Sci Total Environ 409:2244–2251. doi: 10.1016/j.scitotenv.2011.02.010 CrossRefGoogle Scholar
  38. Lipp J, Trimborn P, Graff W, Becker B (1993) Climatic influence of D/H ratios in the cellulose of late wood in tree rings from spruce (Picea abies L.). In: Isotope techniques in the study of past and current environmental change in the hydropshere and atmosphere. International Atomic Energy Agency, Vienna, pp 395–405 Google Scholar
  39. Lipp J, Trimborn P, Edwards T, Waisel Y, Yakir D (1996) Climatic effects on the δ18O and δ13C of cellulose in desert tree Tamarix jordanis. Geochim Cosmochim Acta 60:3305–3309. doi: 10.1016/0016-7037(96)00166-4 CrossRefGoogle Scholar
  40. Liu XH, Shao XM, Liang EY, Chen T, Qin DH, An WL, Xu GB, Sun WZ, Wang Y (2009) Climatic significance of tree-ring δ18O in the Qilian Mountains, northwestern China and its relationship to atmospheric circulation patterns. Chem Geol 268(1–2):147–154. doi: 10.1016/j.chemgeo.2009.08.005 CrossRefGoogle Scholar
  41. Liu XH, An WL, Treydte K, Shao XM, Leavitt SW, Hou SG, Chen T, Sun WZ, Qin DH (2012) Tree-ring δ18O in southwestern China linked to variations in regional cloud cover and tropical sea surface temperature. Chem Geol 291:104–115. doi: 10.1016/j.chemgeo.2011.10.001 CrossRefGoogle Scholar
  42. Liu XH, Zeng XM, Leavitt SW, Wang WZ, An WL, Xu GB, Sun WZ, Qin DH, Ren JW (2013) A 400-year tree-ring δ18O for the southeastern Tibetan Plateau: implications to variations of Indian Summer Monsoon. Global Planet Change 104:23–33CrossRefGoogle Scholar
  43. Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small whole wood samples to α-cellulose. Chem Geol 136:313–317. doi: 10.1016/S0009-2541(96)00133-7 CrossRefGoogle Scholar
  44. Loader NJ, Santillo PM, Woodman-Ralph JP, Rolfe JE, Hall MA, Gagen M, Robertson I, Wilson R, Froyd CA, McCarroll D (2008) Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chem Geol 252:62–71. doi: 10.1016/j.chemgeo.2008.01.006 CrossRefGoogle Scholar
  45. Loader NJ, Young GHF, Grudd H, McCarroll D (2013) Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quat Sci Rev 62:97–113. doi: 10.1016/j.quascirev.2012.11.014 CrossRefGoogle Scholar
  46. Masson-Delmotte V, Raffalli-Delerce G, Danis PA, Yiou P, Stievenard M, Guibal F, Mestre O, Bernard V, Goosse H, Hoffmann G, Jouzel J (2005) Changes in European precipitation seasonality and in drought frequencies revealed by a four-century-long tree-ring isotopic record from Brittany, western France. Clim Dyn 24:57–69. doi: 10.1007/s00382-004-0458-1 CrossRefGoogle Scholar
  47. Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Clim Appl Meteorol 26:1589–1600CrossRefGoogle Scholar
  48. Miller DL, Mora CI, Grissino-Mayer HD, Mock CJ, Uhle ME, Sharp Z (2006) Tree-ring isotope records of tropical cyclone activity. PNAS 103(39):14294–14297. doi: 10.1073/pnas.0606549103 CrossRefGoogle Scholar
  49. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  50. Odezulu CI (2011) Stable hydrogen and oxygen isotopic variations in natural waters in North Florida: implications for hydrological and paleoclimatic studies. PhD thesis. University of Florida, GainesvilleGoogle Scholar
  51. Offermann C, Ferrio JP, Holst J, Grote R, Siegwolf R (2011) The long way down—are carbon and oxygen isotope signals in the tree ring uncoupled from canopy physiological processes? Tree Physiol 31:1088–1102. doi: 10.1093/treephys/tpr093 CrossRefGoogle Scholar
  52. Pillai PA, Mohankumar K (2010) Effect of late 1970’s climate shift on tropospheric biennial oscillation—role of local Indian Ocean processes on Asian summer monsoon. Int J Climatol 30(4):509–521. doi: 10.1002/joc.1903 Google Scholar
  53. Porter TJ, Michael FJP, Robert DF, Kokelj SV, Edwards TWD, deMontigny P, Healy R, LeGrande AN (2013) Spring-summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree-rings from the Mackenzie Delta, northwestern Canada. Clim Dyn. doi: 10.1007/s00382-013-1674-3 Google Scholar
  54. Rashid H, England E, Thompson L, Polyak L (2011) Late glacial to Holocene Indian summer monsoon variability based upon sediment records taken from the Bay of Bengal. Terr Atmos Ocean Sci 22(2):215–228. doi: 10.3319/TAO.2010.09.17.02(TibXS) CrossRefGoogle Scholar
  55. Rebetez M, Saurer M, Cherubini P (2003) To what extent can oxygen isotopes in tree rings and precipitation be used to reconstruct past atmospheric temperature? A case study. Clim Chang 61(1):237–248CrossRefGoogle Scholar
  56. Ren AC, Ren GY, Deng LJ, Shi CC, Zhou HM, Liu WD (2008) Temporal and spatial distribution of Litang range land’s desertification on north-western plateau of Sichuan using TM image (in Chinese). Southwest China J Agric Sci 21(2):425–428Google Scholar
  57. Roden JS, Ehleringer JR (2000) There is no temperature dependence of net biochemical fractionation of hydrogen and oxygen isotopes in tree-ring cellulose. Isot Environ Health Stud 36:303–317. doi: 10.1080/10256010008036389 CrossRefGoogle Scholar
  58. Roden JS, Lin GH, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64(1):21–35. doi: 10.1016/S0016-7037(99)00195-7 CrossRefGoogle Scholar
  59. Sano M, Ramesh R, Sheshshayee MS, Sukumar R (2011) Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. The Holocene 22(7):809–817. doi: 10.1177/0959683611430338 CrossRefGoogle Scholar
  60. Sano M, Xu CX, Nakatsuk T (2012) A 300-year Vietnam hydroclimate and ENSO variability record reconstructed from tree ring δ18O. J Geophys Res 117:D12115. doi: 10.1029/2012JD017749 Google Scholar
  61. Saurer M, Borella S, Leuenberger M (1997) δ18O of tree rings of beech (Fagus silvatica) as a record of δ18O of the growing season precipitation. Tellus B 49:80–92. doi: 10.1034/j.1600-0889.49.issue1.6.x CrossRefGoogle Scholar
  62. Saurer M, Kress A, Leuenberger M, Rinne KT, Treydte KS, Siegwolf RTW (2012) The influence of atmospheric circulation patterns on the oxygen isotope ratio of tree-rings in the Alpine region. J Geophys Res 117:D05118. doi: 10.1029/2011JD016861 Google Scholar
  63. Shao XM, Fan JM (1999) Past climate on west Sichuan Plateau as reconstructed from ring-widths of dragon spruce (in Chinese). Quat Sci 1:81–89Google Scholar
  64. Shi C, Masson-Delmotte V, Risi C, Eglin T, Stievenard M, Pierre M, Wang XC, Gao J, Bréon FM, Zhang QB, Daux V (2011) Sampling strategy and climatic implications of tree-ring stable isotopes on the southeast Tibetan Plateau. Earth Planet Sci Lett 301:307–316. doi: 10.1016/j.epsl.2010.11.014 CrossRefGoogle Scholar
  65. Shi C, Daux V, Risi C, Hou SG, Stievenard M, Pierre M, Li Z, Masson-Delmotte V (2012) Reconstruction of southeast Tibetan Plateau summer cloud cover over the past two centuries using tree ring δ18O. Clim Past 7:205–213. doi: 10.5194/cp-8-205-2012 CrossRefGoogle Scholar
  66. Sternberg L, DeNiro MJ, Johnson HB (1986) Oxygen and hydrogen isotope ratios of water from photosynthetic tissues of CAM and C3 plants. Plant Physiol 82:428–431CrossRefGoogle Scholar
  67. Sternberg L, Anderson WT, Morrison K (2003) Separating soil and leaf water 18O isotopic signals in plant stem cellulose. Geochim Cosmochim Acta 67(14):2561–2566. doi: 10.1016/S0016-7037(03)00109-1 CrossRefGoogle Scholar
  68. Stokes MA, Smiley TL (1996) An introduction to tree-ring dating. The University of Arizona Press, TucsonGoogle Scholar
  69. Switsur R, Waterhouse J (1998) Stable isotopes in tree ring cellulose. In: Griffiths H (ed) Stable isotopes: integration of biological, ecological and geochemical processes. BIOS Scientific Publishers, Oxford, pp 303–321Google Scholar
  70. Szczepanek M, Pazdur A, Pawelczyk S, Bottger T, Haupt M, Halas S, Bednarz Z, Krapiec M, Szychowska-Krapiec E (2006) Hydrogen, carbon and oxygen isotopes in pine and oak tree rings from Southern Poland as climatic indicators in years 1900–2000. Geochronometria 25:67–76Google Scholar
  71. Szymczak S, Joachimski MM, Braning A, Hetzer T, Kuhlemann J (2012) Are pooled tree ring δ13C and δ18O series reliable climate archives?—a case study of Pinus nigra spp. laricio (Corsica/France). Chem Geol 308–309:40–49. doi: 10.1016/j.chemgeo.2012.03.013 CrossRefGoogle Scholar
  72. Tang K, Feng XH, Ettl GJ (2000) The variations in δD of tree rings and the implications for climatic reconstruction. Geochim Cosmochim Acta 64(10):1663–1673. doi: S0016-7037(00)00348-3 CrossRefGoogle Scholar
  73. Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182. doi: 10.1038/nature04743 CrossRefGoogle Scholar
  74. Treydte K, Frank D, Andreu L, Bednarz Z, Berninger F, Boettger T, D’Allessandro CD, Esper J, Etien N, Filot M, Grabner M, Guillemin MT, Gutierrez E, Haupt M, Helle G, Hilasvuori E, Jungner H, Kalela-Brundin M, Krapiec M, Leuenberger M, Loader NJ, Masson-Delmotte V, Pazdur A, Pawelczyk S, Pierre M, Planells O, Pukiene R, Reynolds C, Rinne K, Saracino A, Saurer M, Sonninen E, Stievenard M, Switsur VR, Szczepanek M, Szychowska-Krapiec E, Todaro L, Waterhouse JS, Weigl M, Schleser GH (2007) Signal strength and climate calibration in a European tree-ring isotope network. Geophys Res Lett 34:L24302. doi: 10.1029/2007GL031106 CrossRefGoogle Scholar
  75. Tsuji H, Nakatsuka T, Yamazaki K, Takagi K (2008) Summer relative humidity in northern Japan inferred from δ18O values of the tree ring in (1776–2002 A.D.): influence of the palaeoclimate indices of atmospheric circulation. J Geophys Res 113:D18103. doi: 10.1029/2007JD009080 CrossRefGoogle Scholar
  76. Wang LL, Duan JP, Chen J, Huang L, Shao XM (2010) Temperature reconstruction from tree-ring maximum density of Balfour spruce in eastern Tibet, China. Int J Climatol 30:972–979. doi: 10.1002/joc.2000 CrossRefGoogle Scholar
  77. Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Roberston I (2002) Oxygen and hydrogen isotope ratios in tree rings: how well do models predict observed values? Earth Planet Sci Lett 201:421–430. doi: S0012-821X(02)00724-0 CrossRefGoogle Scholar
  78. Woodley EJ, Loader NJ, McCarroll D, Young GHF, Robertson I, Heaton THE, Gagen MH (2012) Estimating uncertainty in pooled stable isotope time-series from tree-rings. Chem Geol 294–295:243–248. doi: 10.1016/j.chemgeo.2011.12.008 CrossRefGoogle Scholar
  79. Wu BY (2005) Weakening of Indian summer monsoon in recent decades. Adv Atmos Sci 22(1):21–29. doi: 10.1007/BF02930866 CrossRefGoogle Scholar
  80. Xu H, Hong YT, Hong B, Zhu YX, Wang Y (2009) Influence of ENSO on multi-annual temperature variations at Hongyuan, NE Qinghai-Tibet plateau: evidence from δ13C of spruce tree rings. Int J Climatol 30:120–126. doi: 10.1002/joc.1877 Google Scholar
  81. Xu C, Sano M, Nakatsuka T (2011) Tree ring cellulose δ18O of Fokienia hodginsii in northern Laos: a promising proxy to reconstruct ENSO? J Geophys Res 116(D24):D24109. doi: 10.1029/2011JD016694 Google Scholar
  82. Xu H, Hong YT, Hong B (2012) Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch. Clim Dyn 39(7):2079–2088. doi: 10.1007/s00382-012-1378-0 CrossRefGoogle Scholar
  83. Yakir D, DeNiro MJ (1990) Oxygen and hydrogen isotope fractionation during cellulose metabolism in Lemna gibba L. Plant Physiol 93:325–332CrossRefGoogle Scholar
  84. Yapp CJ, Epstein S (1982) Climatic significance of the hydrogen isotope ratios in tree cellulose. Nature 297:636–639CrossRefGoogle Scholar
  85. Young GHF, Demmler JC, Gunnarson BE, Kirchhefer AJ, Loader NJ, McCarroll D (2011) Age trends in tree ring growth and isotopic archives: a case study of Pinus sylvestris L. from northwestern Norway. Global Biogeochem Cycles 25:GB2020. doi: 10.1029/2010GB003913 CrossRefGoogle Scholar
  86. Young GHF, McCarroll D, Loader NJ, Gagen MH, Kirchhefer AJ, Demmler JC (2012) Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim Dyn 39(1–2):495–507. doi: 10.1007/s00382-011-1246-3 CrossRefGoogle Scholar
  87. Zhao LJ, Yin L, Xiao HL, Chen GD, Zhou MX, Yang YG, Li CZ, Zhou J (2011) Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters area of the Heihe River Basin. Chin Sci Bull 56(4–5):406–416CrossRefGoogle Scholar
  88. Zhao HB, Xu BQ, Yao TD, Wu GJ, Lin SB, Gao J, Wang M (2012) Deuterium excess record in a southern Tibetan ice core and its potential climatic implications. Clim Dyn 38:1791–1803. doi: 10.1007/s00382-011-1161-7 CrossRefGoogle Scholar
  89. Zhu HF, Shao XM, Yin ZY, Huang L (2011a) Early summer temperature reconstruction in the eastern Tibetan plateau since AD 1440 using tree-ring width of Sabina tibetica. Theor Appl Climatol 106(1–2):45–53. doi: 10.1007/s00704-011-0419-7 CrossRefGoogle Scholar
  90. Zhu HF, Shao XM, Yin ZY, Xu P, Xu Y, Tian H (2011b) August temperature variability in the southeastern Tibetan Plateau since AD 1385 inferred from tree rings. Palaeogeogr Palaeoclimatol Palaeoecol 305(1–4):84–92. doi: 10.1016/j.palaeo.2011.02.017 CrossRefGoogle Scholar
  91. Zhu MF, Stott L, Buckley B, Yoshimura K, Ra K (2012) Indo-Pacific Warm Pool convection and ENSO since 1867 derived from Cambodian pine tree cellulose oxygen isotopes. J Geophys Res 117:D11307. doi: 10.1029/2011JD017198 CrossRefGoogle Scholar
  92. Zundel G, Miekeley W, Grisi BM, Forstel H (1978) The H218O enrichment in the leaf water of tropic trees: comparison of species from the tropical rain forest and the semi-arid region of Brazil. Radiat Environ Biophys 15:203–212CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wenling An
    • 1
    • 3
    • 4
  • Xiaohong Liu
    • 1
    Email author
  • Steven W. Leavitt
    • 2
  • Guobao Xu
    • 1
    • 3
  • Xiaomin Zeng
    • 1
    • 3
  • Wenzhi Wang
    • 1
    • 3
  • Dahe Qin
    • 1
  • Jiawen Ren
    • 1
  1. 1.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.Laboratory of Tree-Ring ResearchUniversity of ArizonaTucsonUSA
  3. 3.University of the Chinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory for Coast and Island Development (Ministry of Education), School of Geographic and Oceanographic SciencesNanjing UniversityNanjingChina

Personalised recommendations