Abstract
Antarctic “Vostok” station works most closely to the center of the ice cap among permanent year-around stations. Climate conditions are exclusively stable: low precipitation level, cloudiness and wind velocity. These conditions can be considered as an ideal model laboratory to study the surface temperature response on solar irradiance variability during 11-year cycle of solar activity. Here we solve an inverse heat conductivity problem: calculate the boundary heat flux density (HFD) from known evolution of temperature. Using meteorological temperature record during (1958–2011) we calculated the HFD variation about 0.2–0.3 W/m2 in phase with solar activity cycle. This HFD variation is derived from 0.5 to 1 °C temperature variation and shows relatively high climate sensitivity per 0.1 % of solar radiation change. This effect can be due to the polar amplification phenomenon, which predicts a similar response 0.3–0.8 °C/0.1 % (Gal-Chen and Schneider in Tellus 28:108–121, 1975). The solar forcing (TSI) is disturbed by volcanic forcing (VF), so that their linear combination TSI + 0.5VF empirically provides higher correlation with HFD (r = 0.63 ± 0.22) than TSI (r = 0.50 ± 0.24) and VF (r = 0.41 ± 0.25) separately. TSI shows higher wavelet coherence and phase agreement with HFD than VF.
This is a preview of subscription content,
to check access.


References
Beck JV, St Clair CR, Blackwell B (1985) Inverse heat conduction. Wiley, New York
Beltrami H (2002) Climate from borehole data: energy fluxes and temperatures since 1500. Geophys Res Lett 29(23):2111
Beltrami H, Smerdon JE, Pollack HN, Huang S (2002) Continental heat gain in the global climate system. Geophys Res Lett 29(8):1167
Budyko MI (1968) The effect of solar radiation variations on the climate of the Earth. Tellus 21:611–619
Chen B, Zhang R, Sun S, Bian L, Xiao C, Zhang T (2010) A one-dimensional heat transfer model of the Antarctic Ice Sheet and modeling of snow temperatures at Dome A, the summit of Antarctic Plateau. Sci China Earth Sci 53(5):763–772
Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277
Eichler A, Olivier S, Henderson K, Laube A, Beer J, Papina T, Gäggeler HW, Schwikowski M (2009) Temperature response in the Altai region lags solar forcing. Geophys Res Lett 36:L01808. doi:10.1029/2008GL035930
Foukal P, Fröhlich C, Spruit H, Wigley TML (2006) Variations in solar luminosity and their effect on the Earth’s climate. Nature 443:161–166
Frohlich C (2007) Solar irradiance variability since 1978. Solar Variability and Planetary Climates, 53–65
Frolich C, Lean J (1998) The Sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophys Res Lett 25:4377
Gal-Chen T, Schneider SH (1975) Energy balance climate modeling: comparison of radiative and dynamic feedback mechanisms. Tellus 28:108–121
Gregory JM, Forster PM (2008) Transient climate response estimated from radiative forcing and observed temperature change. J Geophys Res, 113(D23)
Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA, Thorpe RB, Lowe JA, Johns TC, Williams KD (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi:10.1029/2003GL018747
Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566
Karlsson KG, Riihelä A, Müller R, Meirink JF, Sedlar J, Stengel M, Wolters E (2013) CLARA-A1: a cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos Chem Phys 13(10):5351–5367
Kiehl JT (2007) Twentieth century climate model response and climate sensitivity. Geophys Res Lett 34:L22710. doi:10.1029/2007GL031383
Knutti R, Krahenmann S, Frame DJ, Allen MR (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. J Geophys Res 113:D15103. doi:10.1029/2007JD009473
Langen PL, Alexeev VA (2007) Polar amplification as a preferred response in an idealized aquaplanet GCM. Clim Dyn 29:305–317. doi:10.1007/s00382-006-0221-x
Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22(23):3195–3198
Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depth, 1850–1990. J Geophys Res 98:22987–22994
Scafetta N, West BJ (2007) Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600. J Geophys Res 112(D24):D24S03
Scafetta N, Willson RC (2009) ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys Res Lett 36:L05701. doi:10.1029/2008GL036307
Schneider EK, Kirtman BP, Lindzen RS (1999) Tropospheric water vapor and climate sensitivity. J Atmos Sci 56:1649–1658
Schwartz SE (2007) Heat capacity, time constant, and sensitivity of Earth’s climate system. J Geophys Res 112:D24S05. doi:10.1029/2007JD008746
Sirocko F, Brunck H, Pfahl S (2012) Solar influence on winter severity in central Europe. Geophys Res Lett 39(16):L16704
Solanki SK, Fligge M (1999) A reconstruction of total solar irradiance since 1700. Geophys Res Lett 26(16):2465–2468
Stevens MJ, North GR (1996) Detection of the climate response to the solar cycle. J Atmos Sci 53:2594–2608
Stone PH (1978) Constraints on dynamical transports of energy on a spherical planet. Dyn Atmos Oceans 2(2):123–139
Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14(16):3433–3443
Volobuev D (2006) “TOY” dynamo to describe the long-term solar activity cycles. Sol Phys 238(2):421–430
Volobuev DM (2009) The shape of the sunspot cycle: a one-parameter fit. Sol Phys 258(2):319–330
Wang YM, Lean JL, Sheeley NR Jr (2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625(1):522
Wilson RC, Mordvinor AV (2003) Secular total solar irradiance trend during solar cycles 21–23. Geophys Res Lett 30:1199
Zhou J, Tung KK (2010) Solar cycles in 150 years of global sea surface temperature data. J Clim 23(12):3234–3248
Zhu J, Kamachi M, Wang D (2002) Estimation of air-sea heat flux from ocean measurements: an ill-posed problem. J Geophys Res 107(C10):3159
Acknowledgments
I am indebted to both anonymous Referees for thoughtful reading of the manuscript and useful suggestions. I thank AARI and RAE teams for making meteorological data for Vostok available online, as well I thank cited Authors of TSI and VFs reconstructions. Wavelet coherence software http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence was provided by A. Grinsted. Special thank to my colleagues from 43rd RAE winter at Vostok. The work was supported by grants: Program of Presidium of Russian Academy of Science N 22, Russian Foundation for Basic Research N 10-02-00391-a, 11-02-00755-a and Scientific School-1625.2012.2.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Volobuev, D.M. Central antarctic climate response to the solar cycle. Clim Dyn 42, 2469–2475 (2014). https://doi.org/10.1007/s00382-013-1925-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-013-1925-3