Climate Dynamics

, Volume 42, Issue 9–10, pp 2469–2475 | Cite as

Central antarctic climate response to the solar cycle

  • D. M. VolobuevEmail author


Antarctic “Vostok” station works most closely to the center of the ice cap among permanent year-around stations. Climate conditions are exclusively stable: low precipitation level, cloudiness and wind velocity. These conditions can be considered as an ideal model laboratory to study the surface temperature response on solar irradiance variability during 11-year cycle of solar activity. Here we solve an inverse heat conductivity problem: calculate the boundary heat flux density (HFD) from known evolution of temperature. Using meteorological temperature record during (1958–2011) we calculated the HFD variation about 0.2–0.3 W/m2 in phase with solar activity cycle. This HFD variation is derived from 0.5 to 1 °C temperature variation and shows relatively high climate sensitivity per 0.1 % of solar radiation change. This effect can be due to the polar amplification phenomenon, which predicts a similar response 0.3–0.8 °C/0.1 % (Gal-Chen and Schneider in Tellus 28:108–121, 1975). The solar forcing (TSI) is disturbed by volcanic forcing (VF), so that their linear combination TSI + 0.5VF empirically provides higher correlation with HFD (r = 0.63 ± 0.22) than TSI (r = 0.50 ± 0.24) and VF (r = 0.41 ± 0.25) separately. TSI shows higher wavelet coherence and phase agreement with HFD than VF.


Solar cycle Antarctic climate IHCP 



I am indebted to both anonymous Referees for thoughtful reading of the manuscript and useful suggestions. I thank AARI and RAE teams for making meteorological data for Vostok available online, as well I thank cited Authors of TSI and VFs reconstructions. Wavelet coherence software was provided by A. Grinsted. Special thank to my colleagues from 43rd RAE winter at Vostok. The work was supported by grants: Program of Presidium of Russian Academy of Science N 22, Russian Foundation for Basic Research N 10-02-00391-a, 11-02-00755-a and Scientific School-1625.2012.2.


  1. Beck JV, St Clair CR, Blackwell B (1985) Inverse heat conduction. Wiley, New YorkGoogle Scholar
  2. Beltrami H (2002) Climate from borehole data: energy fluxes and temperatures since 1500. Geophys Res Lett 29(23):2111CrossRefGoogle Scholar
  3. Beltrami H, Smerdon JE, Pollack HN, Huang S (2002) Continental heat gain in the global climate system. Geophys Res Lett 29(8):1167CrossRefGoogle Scholar
  4. Budyko MI (1968) The effect of solar radiation variations on the climate of the Earth. Tellus 21:611–619CrossRefGoogle Scholar
  5. Chen B, Zhang R, Sun S, Bian L, Xiao C, Zhang T (2010) A one-dimensional heat transfer model of the Antarctic Ice Sheet and modeling of snow temperatures at Dome A, the summit of Antarctic Plateau. Sci China Earth Sci 53(5):763–772CrossRefGoogle Scholar
  6. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  7. Eichler A, Olivier S, Henderson K, Laube A, Beer J, Papina T, Gäggeler HW, Schwikowski M (2009) Temperature response in the Altai region lags solar forcing. Geophys Res Lett 36:L01808. doi: 10.1029/2008GL035930 Google Scholar
  8. Foukal P, Fröhlich C, Spruit H, Wigley TML (2006) Variations in solar luminosity and their effect on the Earth’s climate. Nature 443:161–166CrossRefGoogle Scholar
  9. Frohlich C (2007) Solar irradiance variability since 1978. Solar Variability and Planetary Climates, 53–65Google Scholar
  10. Frolich C, Lean J (1998) The Sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophys Res Lett 25:4377CrossRefGoogle Scholar
  11. Gal-Chen T, Schneider SH (1975) Energy balance climate modeling: comparison of radiative and dynamic feedback mechanisms. Tellus 28:108–121CrossRefGoogle Scholar
  12. Gregory JM, Forster PM (2008) Transient climate response estimated from radiative forcing and observed temperature change. J Geophys Res, 113(D23)Google Scholar
  13. Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA, Thorpe RB, Lowe JA, Johns TC, Williams KD (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi: 10.1029/2003GL018747 Google Scholar
  14. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566CrossRefGoogle Scholar
  15. Karlsson KG, Riihelä A, Müller R, Meirink JF, Sedlar J, Stengel M, Wolters E (2013) CLARA-A1: a cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos Chem Phys 13(10):5351–5367CrossRefGoogle Scholar
  16. Kiehl JT (2007) Twentieth century climate model response and climate sensitivity. Geophys Res Lett 34:L22710. doi: 10.1029/2007GL031383 CrossRefGoogle Scholar
  17. Knutti R, Krahenmann S, Frame DJ, Allen MR (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. J Geophys Res 113:D15103. doi: 10.1029/2007JD009473 CrossRefGoogle Scholar
  18. Langen PL, Alexeev VA (2007) Polar amplification as a preferred response in an idealized aquaplanet GCM. Clim Dyn 29:305–317. doi: 10.1007/s00382-006-0221-x CrossRefGoogle Scholar
  19. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22(23):3195–3198CrossRefGoogle Scholar
  20. Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depth, 1850–1990. J Geophys Res 98:22987–22994CrossRefGoogle Scholar
  21. Scafetta N, West BJ (2007) Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600. J Geophys Res 112(D24):D24S03Google Scholar
  22. Scafetta N, Willson RC (2009) ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys Res Lett 36:L05701. doi: 10.1029/2008GL036307 CrossRefGoogle Scholar
  23. Schneider EK, Kirtman BP, Lindzen RS (1999) Tropospheric water vapor and climate sensitivity. J Atmos Sci 56:1649–1658CrossRefGoogle Scholar
  24. Schwartz SE (2007) Heat capacity, time constant, and sensitivity of Earth’s climate system. J Geophys Res 112:D24S05. doi: 10.1029/2007JD008746 Google Scholar
  25. Sirocko F, Brunck H, Pfahl S (2012) Solar influence on winter severity in central Europe. Geophys Res Lett 39(16):L16704Google Scholar
  26. Solanki SK, Fligge M (1999) A reconstruction of total solar irradiance since 1700. Geophys Res Lett 26(16):2465–2468CrossRefGoogle Scholar
  27. Stevens MJ, North GR (1996) Detection of the climate response to the solar cycle. J Atmos Sci 53:2594–2608CrossRefGoogle Scholar
  28. Stone PH (1978) Constraints on dynamical transports of energy on a spherical planet. Dyn Atmos Oceans 2(2):123–139CrossRefGoogle Scholar
  29. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14(16):3433–3443CrossRefGoogle Scholar
  30. Volobuev D (2006) “TOY” dynamo to describe the long-term solar activity cycles. Sol Phys 238(2):421–430CrossRefGoogle Scholar
  31. Volobuev DM (2009) The shape of the sunspot cycle: a one-parameter fit. Sol Phys 258(2):319–330CrossRefGoogle Scholar
  32. Wang YM, Lean JL, Sheeley NR Jr (2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625(1):522CrossRefGoogle Scholar
  33. Wilson RC, Mordvinor AV (2003) Secular total solar irradiance trend during solar cycles 21–23. Geophys Res Lett 30:1199CrossRefGoogle Scholar
  34. Zhou J, Tung KK (2010) Solar cycles in 150 years of global sea surface temperature data. J Clim 23(12):3234–3248CrossRefGoogle Scholar
  35. Zhu J, Kamachi M, Wang D (2002) Estimation of air-sea heat flux from ocean measurements: an ill-posed problem. J Geophys Res 107(C10):3159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Pulkovo ObservatorySaint PetersburgRussia

Personalised recommendations