Skip to main content

Advertisement

Log in

Temporal evolution of surface humidity in Spain: recent trends and possible physical mechanisms

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We analyzed the evolution of surface relative humidity (RH) and specific humidity (q) in Spain, based on complete records available from the State Meteorological Agency of Spain. The surface RH records used span the period 1920–2011, but because of spatial and temporal constraints in the dataset we used a subset of the data, covering the period 1961–2011. The subset contained 50 monthly series of RH, which were created through a process of quality control, reconstruction and homogenization. The data shows that there was a large decrease in RH over mainland Spain from 1961 to 2011, which was greatest in spring and summer. In contrast, there was no overall change in the specific humidity in this period, except in spring, when an increase was observed. The decrease in RH affected the entire country, but the changes in specific humidity were less homogeneous. For specific humidity there was a general increase in the northern and eastern parts of Spain, whereas negative trends dominated in the central and southern areas, mainly during the summer months. The results suggest that an increase in the water holding capacity of the atmosphere as a consequence of warming during recent decades has not been accompanied by an increase in the surface water vapor content, probably because the supply of water vapor from the main terrestrial and oceanic areas has been constrained. We discuss the implications of these findings for evapotranspiration processes, precipitation and water management in Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aikman H (1997) The association between arthritis and the weather. Int J Biometeorol 40:192–199

    Google Scholar 

  • Alberdi JC, Díaz J, Montero JC, Mirón I (1998) Daily mortality in Madrid community 1986–1992: relationship with meteorological variables. Eur J Epidemiol 14:571–578

    Google Scholar 

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675

    Google Scholar 

  • Allan RP (2012) The role of water vapour in Earth’s energy flows. Surv Geophys 33:557–564

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop requirements. Irrigation and drainage paper 56. FAO, Rome

    Google Scholar 

  • Álvarez E, Espejo F, Cortés FJ, Lafragüeta C, Serrano R (2011) Caracterización sinóptica de los procesos convectivos en el interior del nordeste peninsular. Nota Técnica 3 de AEMET. Agencia Estatal de Meteorología. Available on-line at http://www.aemet.es/documentos/es/conocermas/publicaciones/Sinoptica/NT_AEMET_3.pdf

  • Austin RB, Cantero-Martínez C, Arrúe JL, Playán E, Cano-Marcellán P (1998) Yield-rainfall relationships in cereal cropping systems in the Ebro river valley of Spain. Eur J Agron 8:239–248

    Google Scholar 

  • Azorin-Molina C, Connell BH, Baena-Calatrava R (2009) Sea-breeze convergence zones from AVHRR over the Iberian Mediterranean area and the Isle of Mallorca, Spain. J Appl Meteorol Climatol 48:2069–2085

    Google Scholar 

  • Brázdil R, Chromá K, Dobrovolný P, Tolasz R (2009) Climate fluctuations in the Czech Republic during the period 1961–2005. Int J Climatol 29:223–242

    Google Scholar 

  • Brown P, DeGaetano AT (2012) Trends in U.S. surface humidity, 1930–2010. J Appl Meteorol Climatol. doi:10.1175/JAMC-D-12-035.1

  • Brunet M, Jones PD, Sigro J, Saladie O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117. doi:10.1029/2006JD008249

    Google Scholar 

  • Brunetti M et al (2009) Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis. Int J Climatol 29:2197–2225

    Google Scholar 

  • Butler CJ, García-Suárez AM (2012) Relative humidity at Armagh Observatory, 1838–2008. Int J Climatol 32:657–668

    Google Scholar 

  • Cahynová M, Huth R (2009) Changes of atmospheric circulation in central Europe and their influence on climatic trends in the Czech Republic. Theor Appl Climatol 96:57–68

    Google Scholar 

  • Camarero JJ, Bigler C, Linares JC, Gil-Pelegrín E (2011) Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests. For Ecol Manag 262:759–769

    Google Scholar 

  • Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108:1474–1478

    Google Scholar 

  • Castell N, Mantilla E, Millan MM (2008) Analysis of tropospheric ozone concentration on a Western Mediterranean site: Castellon (Spain). Environ Monit Assess 136:3–11

    Google Scholar 

  • Chueca Cía J, Julián Andrés A, Saz Sánchez MA, Creus Novau J, López Moreno JI (2005) Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology 68:167–182

    Google Scholar 

  • Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19:3589–3606

    Google Scholar 

  • de Luis M, Brunetti M, Gonzalez-Hidalgo JC, Longares LA, Martin-Vide J (2010) Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Glob Planet Change 74:27–33

    Google Scholar 

  • Dirmeyer PA, Brubaker KL (2007) Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J Hydrometeorol 8:20–37

    Google Scholar 

  • El Kenawy A, López-Moreno JI, Vicente-Serrano SM (2012) Trend and variability of temperature in northeastern Spain (1920–2006): linkage to atmospheric circulation. Atmos Res 106:159–180

    Google Scholar 

  • Eltahir EAB (1998) A soil moisture-rainfall feedback mechanism 1. Theory and observations. Water Resour Res 34:765–776

    Google Scholar 

  • Espadafor M, Lorite IJ, Gavilán P, Berengena J (2011) An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agric Water Manag 98:1045–1061

    Google Scholar 

  • Fernández-Raga M, Tomás C, Fraile R (2010) Human mortality seasonality in Castile-León, Spain, between 1980 and 1998: the influence of temperature, pressure and humidity. Int J Biometeorol 54:379–392

    Google Scholar 

  • Flannigan MD, Harrington JB (1988) A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–1980). J Appl Meteorol 27:441–452

    Google Scholar 

  • Gaffen DJ, Ross RJ (1999) Climatology and trends of U.S. surface humidity and temperature. J Clim 12:811–828

    Google Scholar 

  • Galiano L, Martínez-Vilalta J, Lloret F (2010) Drought-induced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13:978–991

    Google Scholar 

  • Gallego MC, Trigo RM, Vaquero JM, Brunet M, García JA, Sigró J, Valente MA (2011) Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century. J Geophys Res D: Atmos 116(2):D02109

    Google Scholar 

  • Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010a) On the origin of continental precipitation. Geophys Res Lett 37. doi:10.1029/2010GL043712

  • Gimeno L, Nieto R, Trigo RM, Vicente-Serrano SM, López-Moreno JI (2010b) Where does the Iberian Peninsula moisture come from? An answer based on a Lagrangian approach. J Hydrometeorol 11:421–436

    Google Scholar 

  • Gimeno L et al (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50(4):RG4003

    Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104

    Google Scholar 

  • Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob Planet Change 100:172–182

    Google Scholar 

  • González-Ferrando S (2003) Situación actual y perspectivas del regadío en España. Revista Española de Estudios Agrosociales y Pesqueros 200-II:1117–1137

    Google Scholar 

  • González-Hidalgo JC, Brunetti M, de Luis M (2011) A new tool for monthly precipitation analysis in Spain: MOPREDAS database (monthly precipitation trends December 1945–November 2005). Int J Climatol 31:715–731

    Google Scholar 

  • Grindlay AL, Lizárraga C, Rodríguez MI, Molero E (2011) Irrigation and territory in the southeast of Spain: evolution and future perspectives within new hydrological planning. WIT Trans Ecol Environ 150:623–638

    Google Scholar 

  • Hamed A, Korhonen H, Sihto S-L, Joutsensaari J, Jrvinen H, Petäjä T, Arnold F, Nieminen T, Kulmala M, Smith JN, Lehtinen KEJ, Laaksonen A (2011) The role of relative humidity in continental new particle formation. J Geophys Res D Atmos 216:D03202

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi:10.1029/2010RG000345

    Google Scholar 

  • Hargreaves GL, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Google Scholar 

  • Hervás D, Reina J, Hervás JA (2012) Meteorologic conditions and respiratory syncytial virus activity. Pediatr Infect Dis J 31:176–181

    Google Scholar 

  • Hidalgo HG, Cayan DR, Dettinger MD (2005) Sources of variability of evapotranspiration in California. J Hydrometeorol 6:3–19

    Google Scholar 

  • Hill J, Stellmes M, Udelhoven Th, Röder A, Sommer S (2008) Mediterranean desertification and land degradation. Mapping related land use change syndromes based on satellite observations. Glob Planet Change 64:146–157

    Google Scholar 

  • Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P (2012) On the increased frequency of mediterranean drought. J Clim 25:2146–2161

    Google Scholar 

  • Isaac V, Van Wijngaarden WA (2012) Surface water vapor pressure and temperature trends in North America during 1948–2010. J Clim 25:3599–3609

    Google Scholar 

  • Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377

    Google Scholar 

  • Jones RH, Westra S, Sharma A (2010) Observed relationships between extreme sub‐daily precipitation, surface temperature, and relative humidity. Geophys Res Lett 37:L22805. doi:10.1029/2010GL045081

    Google Scholar 

  • Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res D Atmos 117(5):D05127

    Google Scholar 

  • Juang J-Y, Porporato A, Stoy PC, Siqueira MS, Oishi AC, Detto M, Kim H-S, Katul GG (2007) Hydrologic and atmospheric controls on initiation of convective precipitation events. Water Resour Res 43(3):W03421

    Google Scholar 

  • Jung M et al (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954

    Google Scholar 

  • Karl TR, Williams CN (1987) An approach to adjusting climatological time series for discontinuous inhomogeneities. J Clim Appl Meteorol 26:1744–1763

    Google Scholar 

  • Kendall MG, Gibbons JD (1990) Rank correlation methods, 5th edn. Arnold, London

    Google Scholar 

  • Klemm O, Milford C, Sutton MA, Spindler G, Van Putten E (2002) A climatology of leaf surface wetness. Theor Appl Climatol 71:107–117

    Google Scholar 

  • Lanzante JR (1996) Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. Int J Climatol 16:1197–1226

    Google Scholar 

  • Lasanta T (2007) El paisaje de la montaña mediterránea: Cambios por el abandono de tierras agrícolas. Cuadernos de la Sostenibilidad y Patrimonio Natural 11:58–69

    Google Scholar 

  • Lasanta T, Vicente-Serrano SM (2012) Complex land cover change processes in semiarid Mediterranean regions: an approach using Landsat images in northeast Spain. Remote Sens Environ 124:1–14

    Google Scholar 

  • Lasanta T, Vicente Serrano SM, Cuadrat JM (2005) Spatial-temporal variability of the plant landscape in the mediterranean highlands due to the abandonment of traditional land uses: a study of the Spanish Central Pyrenees. Appl Geogr 25:47–65

    Google Scholar 

  • Linares JC, Camarero JJ (2012) Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees. Eur J For Res 131:1001–1012

    Google Scholar 

  • Liu Q, McVicar TR (2012) Assessing climate change induced modification of Penman potential evaporation and runoff sensitivity in a large water-limited basin. J Hydrol 464–465:352–362

    Google Scholar 

  • López-Moreno JI, Vicente-Serrano SM, Beguería S, El Kenawy AM, Angulo M (2010) Trends in daily precipitation on the north-eastern Iberian Peninsula, 1955-2006. Int J Climatol 30:1026–1041

    Google Scholar 

  • Martín ML, Santos-Muñoz D, Morata A, Luna MY, Valero F (2006) An objectively selected case study of a heavy rain event in the Mediterranean Basin: a diagnosis using numerical simulation. Atmos Res 81:187–205

    Google Scholar 

  • Martínez J, Vega-Garcia C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252

    Google Scholar 

  • Meehl G et al (2007) Global climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 747–845

    Google Scholar 

  • Millán MM et al (2005a) Climatic feedbacks and desertification: the Mediterranean model. J Clim 18:684–701

    Google Scholar 

  • Millán MM, Estrela MJ, Miró J (2005b) Rainfall components: variability and spatial distribution in a Mediterranean area (Valencia region). J Clim 18:2682–2705

    Google Scholar 

  • Norrant C, Douguédroit A (2006) Monthly and daily precipitation trends in the Mediterranean (1950–2000). Theor Appl Climatol 83:89–106

    Google Scholar 

  • Oliveira M, Ribeiro H, Delgado JL, Abreu I (2009) The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level. Int J Biometeorol 53:61–73

    Google Scholar 

  • Oort AH (1983) Global atmospheric circulation statistics, 1958–1973. NOAA Prof paper 14. 180 pp and 47 microfiches

  • Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Clim Change 63:337–350

    Google Scholar 

  • Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110:215–226

    Google Scholar 

  • Peterson TC, Easterling DR (1994) Creation of homogeneous composite climatological reference series. Int J Climatol 14:671–679

    Google Scholar 

  • Peterson TC, Easterling DR, Karl TR et al (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18:1493–1517

    Google Scholar 

  • Quiroga S, Garrote L, Iglesias A, Fernández-Haddad Z, Schlickenrieder J, De Lama B, Mosso C, Sánchez-Arcilla A (2011) The economic value of drought information for water management under climate change: A case study in the Ebro basin. Nat Hazards Earth Syst Sci 11:643–657

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14): 4407. doi:10.1029/2002JD002670

    Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Google Scholar 

  • Rowell DP, Jones RG (2006) Causes and uncertainty of future summer drying over Europe. Clim Dyn 27:281–299

    Google Scholar 

  • Ruosteenoja K, Räisänen P (2013) Seasonal changes in solar radiation and relative humidity in Europe in response to global warming. J. Clim 26:2467–2481

    Google Scholar 

  • Sanchez-Lorenzo A, Calbó J, Brunetti M, Deser C (2009) Dimming/brightening over the Iberian Peninsula: trends in sunshine duration and cloud cover and their relations with atmospheric circulation. J Geophys Res D Atmos 114(8):D00D09

    Google Scholar 

  • Sanchez-Lorenzo A, Calbó J, Wild M (2012) Increasing cloud cover in the 20th century: review and new findings in Spain. Clim Past 8:1199–1212

    Google Scholar 

  • Sánchez-Salguero R, Navarro-Cerrillo RM, Camarero JJ, Fernández-Cancio Á (2012) Selective drought-induced decline of pine species in southeastern Spain. Clim Change 113:767–785

    Google Scholar 

  • Santer BD, Mears C, Wentz FJ, Taylor KE, Gleckler PJ, Wigley TML, Barnett TP et al (2007) Identification of human-induced changes in atmospheric moisture content. Proc Natl Acad Sci USA 104:15248–15253

    Google Scholar 

  • Seidel TM, Grant AN, Pszenny AAP, Allman DJ (2007) Dewpoint and humidity measurements and trends at the summit of Mount Washington, New Hampshire, 1935–2004. J Clim 20:5629–5641

    Google Scholar 

  • Sentelhas PC, Marta AD, Orlandini S, Santos EA, Gillespie TJ, Gleason ML (2008) Suitability of relative humidity as an estimator of leaf wetness duration. Agric For Meteorol 148:392–400

    Google Scholar 

  • Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res D Atmos 115:D01110

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean–atmosphere models. J Clim 19:3354–3360

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, UK/New York, NY, USA

    Google Scholar 

  • Stellmes M, Röder A, Udelhoven T, Hill J (2013) Mapping syndromes of land change in Spain with remote sensing time series, demographic and climatic data. Land Use Policy 30:685–702

    Google Scholar 

  • Stepanek P (2003) Homogeneización de las series de temperatura del aire en la República Checa durante el período instrumental. Geographicalia 43:5–24

    Google Scholar 

  • Stepanek P (2012) Anclim software. http://www.climahom.eu/software-solution/anclim

  • Strasser U, Corripio J, Pellicciotti F, Burlando P, Brock B, Funk M (2004) Spatial and temporal variability of meteorological variables at Haut Glacier d’Arolla (Switzerland) during the ablation season 2001: measurements and simulations. J Geophys Res D Atmos 109:D03103 1–D03103 18

    Google Scholar 

  • Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Clim 12:1368–1381

    Google Scholar 

  • Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapor. Clim Dyn 24:741–758

    Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, NY, USA

    Google Scholar 

  • Van Loon AF, Van Huijgevoort MHJ, Van Lanen HAJ (2012) Evaluation of drought propagation in an ensemble mean of large-scale hydrological models. Hydrol Earth Syst Sci 16:4057–4078

    Google Scholar 

  • van Wijngaarden WA, Vincent LA (2005) Examination of discontinuities in hourly surface relative humidity in Canada during 1953–2003. J Geophys Res D Atmos 110:D22102

    Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI, García-Vera MA, Stepanek P (2010a) A complete daily precipitation database for North-East Spain: reconstruction, quality control and homogeneity. Int J Climatol 30:1146–1163

    Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010b) A Multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index—SPEI. J Clim 23:1696–1718

    Google Scholar 

  • Vicente-Serrano SM, Lasanta T, Gracia C (2010c) Aridification determines changes in leaf activity in Pinus halepensis forests under semiarid Mediterranean climate conditions. Agric For Meteorol 150:614–628

    Google Scholar 

  • Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J, Camarero JJ, López-Moreno JI, Azorin-Molina C, Revuelto J, Morán-Tejeda E, Sánchez-Lorenzo A (2012a) Performance of drought indices for ecological, agricultural and hydrological applications. Earth Interact 16:1–27

    Google Scholar 

  • Vicente-Serrano SM, Zouber A, Lasanta T, Pueyo Y (2012b) Dryness is accelerating degradation of vulnerable shrublands in semiarid Mediterranean environments. Ecol Monogr 82:407–428

    Google Scholar 

  • Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev Geophys 50(2):RG2005

    Google Scholar 

  • Wang K, Dickinson RE, Wild M, Liang S (2010) Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development. J Geophys Res D Atmos 115(20):D20113

    Google Scholar 

  • Wexler A (ed) (1965) Humidity and moisture, vols 1 and 3. Reinhold, New York

  • Willett KM, Gillett NP, Jones PD, Thorne PW (2007) Attribution of observed surface humidity changes to human influence. Nature 449:710–712

    Google Scholar 

  • Willett KM, Williams CN Jr, Dunn RJH, Thorne PW, Bell S, de Podesta M, Jones PD, Parker DE (2012) HadISDH: an updated land surface specific humidity product for climate monitoring. Clim Past Discuss 8:5133–5180. doi:10.5194/cpd-8-5133-2012

    Google Scholar 

  • WMO (2008) Guide to meteorological instruments and methods of observation. World Meteorological Organization, WMO-no. 8 edn

  • Wypych A (2010) Twentieth century variability of surface humidity as the climate change indicator in Kraków (Southern Poland). Theor Appl Climatol 101:475–482

    Google Scholar 

  • Xoplaki E, González-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78

    Google Scholar 

  • Xu C-Y, Gong L, Jiang T, Chen D, Singh VP (2006) Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J Hydrol 327:81–93

    Google Scholar 

  • Zhang R, Khalizov A, Wang L, Min H, Xu W (2012) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev 112:1957–2011

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to J. C. González-Hidalgo for his helpful comments on the first draft of this article. We would like to thank the Spanish Meteorological State Agency (AEMET) for providing the database used in this study. This work has been supported by the research projects CGL2011-27574-CO2-02 and CGL2011-27536 financed by the Spanish Commission of Science and Technology and FEDER, “Demonstration and validation of innovative methodology for regional climate change adaptation in the Mediterranean area (LIFE MEDACC)” financed by the LIFE programme of the European Commission and CTTP1/12 “Creación de un modelo de alta resolución espacial para cuantificar la esquiabilidad y la afluencia turística en el Pirineo bajo distintos escenarios de cambio climático”, financed by the Comunidad de Trabajo de los Pirineos. The second author was granted by the postdoctoral JAE-DOC043 (CSIC) and JCI-2011-10263 (Spanish Ministry of Science and Innovation) grants. The third author was supported by a postdoctoral fellowship from the “Secretaria per a Universitats i Recerca del Departament d’Economia i Coneixement, de la Generalitat de Catalunya i del programa Cofund de les Accions Marie Curie del 7è Programa marc d’R+D de la Unió Europea” (2011 BP-B 00078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio M. Vicente-Serrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicente-Serrano, S.M., Azorin-Molina, C., Sanchez-Lorenzo, A. et al. Temporal evolution of surface humidity in Spain: recent trends and possible physical mechanisms. Clim Dyn 42, 2655–2674 (2014). https://doi.org/10.1007/s00382-013-1885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1885-7

Keywords

Navigation