Advertisement

Climate Dynamics

, Volume 42, Issue 9–10, pp 2627–2637 | Cite as

Examination of multi-perturbation methods for ensemble prediction of the MJO during boreal summer

  • In-Sik KangEmail author
  • Pyong-Hwa Jang
  • Mansour Almazroui
Article

Abstract

The impact of initialization and perturbation methods on the ensemble prediction of the boreal summer intraseasonal oscillation was investigated using 20-year hindcast predictions of a coupled general circulation model. The three perturbation methods used in the present study are the lagged-averaged forecast (LAF) method, the breeding method, and the empirical singular vector (ESV) method. Hindcast experiments were performed with a prediction interval of 10 days for extended boreal summer (May–October) seasons over a 20 year period. The empirical orthogonal function (EOF) eigenvectors of the initial perturbations depend on the individual perturbation method used. The leading EOF eigenvectors of the LAF perturbations exhibit large variances in the extratropics. Bred vectors with a breeding interval of 3 days represent the local unstable mode moving northward and eastward over the Indian and western Pacific region, and the leading EOF modes of the ESV perturbations represent planetary-scale eastward moving perturbations over the tropics. By combining the three perturbation methods, a multi-perturbation (MP) ensemble prediction system for the intraseasonal time scale was constructed, and the effectiveness of the MP prediction system for the Madden and Julian oscillation (MJO) prediction was examined in the present study. The MJO prediction skills of the individual perturbation methods are all similar; however, the MP‐based prediction has a higher level of correlation skill for predicting the real-time multivariate MJO indices compared to those of the other individual perturbation methods. The predictability of the intraseasonal oscillation is sensitive to the MJO amplitude and to the location of the dominant convective anomaly in the initial state. The improvement in the skill of the MP prediction system is more effective during periods of weak MJO activity.

Keywords

Multi-perturbation ensemble prediction Perturbation methods Boreal summer intraseasonal oscillation Madden–Julian oscillation Predictability 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (NRF-2009-C1AAA001-2009-0093042) and also by the Brain Korea 21 project.

References

  1. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean In: Eighth symposium on integrated observing and assimilation systems for atmosphere, ocean, land surface. AMS 84th annual meeting, Seattle, Washington, 11–15 JanGoogle Scholar
  2. Buizza R, Miller M, Palmer TN (1999) Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q J R Meteorol Soc 125:1908–2887CrossRefGoogle Scholar
  3. Buizza R, Houtekamer PL, Toth Z, Pellerin G, Wei M, Zhu Y (2005) A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon Weather Rev 133:1076–1097CrossRefGoogle Scholar
  4. Cai M, Kalnay E, Toth Z (2003) Bred vectors of the Zebiak-Cane model and their potential application to ENSO predictions. J Clim 16:40–56CrossRefGoogle Scholar
  5. Chikamoto Y, Mukougawa H, Kubota T, Sato H, Ito A, Maeda S (2007) Evidence of growing bred vector associated with the tropical intraseasonal oscillation. Geophys Res Lett 34:L04806. doi: 10.1029/2006GL028450 CrossRefGoogle Scholar
  6. Ding R, Li J, Seo KH (2010) Predictability of the Madden–Julian oscillation estimated using observational data. Mon Weather Rev 138:1004–1013. doi: 10.1175/2009MWR3082.1 CrossRefGoogle Scholar
  7. Ding R, Li J, Seo KH (2011) Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon Weather Rev 139:2421–2438CrossRefGoogle Scholar
  8. Frierson DMW, Kim D, Kang IS, Lee MI, Lin JL (2011) Structure of AGCM-simulated convectively coupled Kelvin waves and sensitivity to convective parameterization. J Atmos Sci 68:26–45. doi: 10.1175/2010JAS3356.1 CrossRefGoogle Scholar
  9. Ham YG, Kang IS (2010) Growing-error correction of ensemble Kalman filter using empirical singular vectors. Q J R Meteorol Soc 136:2051–2060. doi: 10.1002/qj.711 CrossRefGoogle Scholar
  10. Ham YG, Schubert SD, Chang Y (2012a) Optimal Initial perturbations for ensemble prediction of the Madden–Julian oscillation during boreal winter. J Clim 25:4932–4945. doi: 10.1175/JCLI-D-11-00344.1.1 CrossRefGoogle Scholar
  11. Ham YG, Kang IS, Kug JS (2012b) Coupled bred vectors in the tropical Pacific and their application to ENSO prediction. Prog Oceanogr 105:90–101. doi: 10.1016/j.pocean.2012.4.5 CrossRefGoogle Scholar
  12. Ham YG, Kang IS, Kim D, Kug JS (2012c) El-Niño southern oscillation simulated and predicted in SNU coupled GCMs. Clim Dyn 39:383–398. doi: 10.1007/s00382-011-1157-3 CrossRefGoogle Scholar
  13. Hoyos CD, Webster PJ (2007) The role of intraseasonal variability in the nature of Asian monsoon precipitation. J Clim 20:4402–4424. doi: 10.1175/JCLI4252.1 CrossRefGoogle Scholar
  14. Jiang X, Waliser DE, Wheeler MC, Jones C, Lee MI, Schubert SD (2008) Assessing the skill of an all-season statistical forecast model for the Madden–Julian oscillation. Mon Weather Rev 136:1940–1956. doi: 10.1175/2007MWR2305.1 CrossRefGoogle Scholar
  15. Kang IS, Kim HM (2010) Assessment of MJO predictability for boreal winter with various statistical and dynamical models. J Clim 23:2368–2378. doi: 10.1175/2010JCLI3288.1 CrossRefGoogle Scholar
  16. Kang IS, Yoo JH (2006) Examination of multi-model ensemble seasonal prediction methods using a simple climate system. Clim Dyn 26:285–294. doi: 10.1007/s00382-005-0074-8 CrossRefGoogle Scholar
  17. Kessler WS (2001) EOF representations of the Madden–Julian oscillation and its connection with ENSO. J Clim 14:3055–3061. doi: 10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2 CrossRefGoogle Scholar
  18. Kim D, Kug JS, Kang IS, Jin FF, Wittenberg AT (2008) Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Clim Dyn. doi: 10.1007/s00382-007-0348-4
  19. Kim D, Sperber KR, Stern W, Waliser D, Kang IS, Maloney ED, Wang W, Weickmann K, Benedict J, Khairoutdinov M (2009) Application of MJO simulation diagnostics to climate models. J Clim 22:6413–6436. doi: 10.1175/2009JCLI3063 CrossRefGoogle Scholar
  20. Kim D, Sobel AH, Kang IS (2011) A mechanism denial study on the Madden–Julian oscillation. J Adv Model Earth Syst 3:M12007. doi: 10.1029/2011MS000081 CrossRefGoogle Scholar
  21. Kug JS, Ham YG, Kimoto M, Jin FF, Kang IS (2010) New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector. Clim Dyn 35:331–340. doi: 10.1007/s00382-009-0664-y CrossRefGoogle Scholar
  22. Kug JS, Ham YG, Lee EJ, Kang IS (2011) Empirical singular vector method for ensemble El Niño-Southern oscillation prediction with a coupled general circulation model. J Geophys Res 116:C08029. doi: 10.1029/2010JC006851 Google Scholar
  23. Lee JY, Wang B, Wheeler MC, Fu X, Waliser D, Kang IS (2013) Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Clim Dyn. doi: 10.1007/s00382-012-1544-4
  24. Lee MI, Kang IS, Kim JK, Mapes BE (2001) Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J Geophys Res 106:14219–14233CrossRefGoogle Scholar
  25. Liess S, Waliser DE, Schubert SD (2005) Predictability studies of the intraseasonal oscillation with the ECHAM5 GCM. J Atmos Sci 62:3320–3336CrossRefGoogle Scholar
  26. Lin JL, Lee MI, Kim D, Kang IS, Frierson DMW (2008) The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J Clim 21:883–909CrossRefGoogle Scholar
  27. Lo F, Hendon HH (2000) Empirical prediction of the Madden–Julian oscillation. Mon Weather Rev 128:2528–2543CrossRefGoogle Scholar
  28. Magnusson L, Leutbecher M, Källén E (2008) Comparison between singular vectors and breeding vectors as initial perturbations for the ECMWF ensemble prediction system. Mon Weather Rev 136:4092–4104. doi: /10.1175/2008MWR2498.1 CrossRefGoogle Scholar
  29. Maloney ED, Hartmann DL (2000) Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J Clim 13:1451–1460CrossRefGoogle Scholar
  30. Molteni F, Palmer TN (1993) Predictability and finite-time instability of the northern winter circulation. Q J R Meteorol Soc 119:269–298CrossRefGoogle Scholar
  31. Molteni F, Buizza R, Palmer TN, Petroliagis T (1996) The ECMWF ensemble prediction system: methodology and validation. Q J R Meteorol Soc 122:73–119CrossRefGoogle Scholar
  32. Moorthi S, Suarez MJ (1992) Relaxed Arakawa–Schubert: a parametrization of moist convection for general circulation models. Mon Weather Rev 120:978–1002CrossRefGoogle Scholar
  33. Pacanowski RC (1996) MOM 2 version 2.0 (beta) documentation user’s guide and reference model. GFDL ocean technical report 3.2, p 329Google Scholar
  34. Palmer TN, Buizza R, Molteni F, Chen YQ, Corti S (1994) Singular vectors and the predictability of weather and climate. Philos Trans R Soc Lond 348:459–475CrossRefGoogle Scholar
  35. Palmer TN, Alessandri A, Andersen U, Cantelaube P, Davey M, Délécluse P, Déqué M (2004) Development of a European multimodel ensemble system for seasonal to interannual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872CrossRefGoogle Scholar
  36. Rashid HA, Hendon HH, Wheeler MC, Alves O (2011) Prediction of the Madden–Julian oscillation with the POAMA dynamical prediction system. Clim Dyn 36:649–661. doi: 10.1007/s00382-010-0754-x CrossRefGoogle Scholar
  37. Seo KH, Schemm JKE, Jones C, Moorthi S (2005) Forecast skill of the tropical intraseasonal oscillation in the NCEP GFS dynamical extended range forecasts. Clim Dyn. doi: 10.1007/s00382-005-0035-2
  38. Shukla JM, Fennessy J (1994) Simulation and predictability of monsoons. In: Proceedings of the international conference on monsoon variability and prediction technical report WCRP-84, WCRP, Geneva, Switzerland, pp 567–575Google Scholar
  39. Shukla JM, Anderson J, Baumhefner D, Brankovic C, Chang Y, Kalnay E, Marx L, Palmer TN, Paolino D, Ploshay J, Schubert SD, Straus D, Suarez MJ, Tribbia J (2000) Dynamical seasonal prediction. Bull Am Meteorol Soc 81:2593–2606CrossRefGoogle Scholar
  40. Simmons AS, Uppala DD, Kobayashi S (2007) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:29–35Google Scholar
  41. Slingo JM, Rowell DP, Sperber KR, Nortley F (1999) On the predictability of the interannual behavior of the Madden–Julian oscillation and its relationship with El Nino. Q J R Meteorol Soc 125:583–609Google Scholar
  42. Sperber KR, Waliser DE (2008) New approaches to understanding, simulating, and forecasting the Madden–Julian oscillation. Bull Am Meteorol Soc 89:1917–1920. doi: 10.1175/2008BAMS2700.1 CrossRefGoogle Scholar
  43. Tokioka T, Yamazaki K, Kitoh A, Ose T (1988) The equatorial 30–60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J Meteorol Soc Jpn 66:883–901Google Scholar
  44. Toth Z, Kalnay E (1993) Ensemble forecasting at NMC: the generation of perturbations. Bull Am Meteorol Soc 74:2317–2330CrossRefGoogle Scholar
  45. Toth Z, Kalnay E (1997) Ensemble forecasting at NCEP and the breeding method. Mon Weather Rev 125:3297–3319CrossRefGoogle Scholar
  46. Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA-interim. ECMWF Newsl 115:12–18Google Scholar
  47. Vitart F, Woolnough S, Balmaseda MA, Tompkins AM (2007) Monthly forecast of the Madden–Julian oscillation using a coupled GCM. Mon Weather Rev 135:2700–2715CrossRefGoogle Scholar
  48. Waliser DE, Jones C, Schemm JKE, Graham NE (1999) A statistical extended-range tropical forecast model based on the slow evolution of the Madden–Julian oscillation. J Clim 12:1918–1939CrossRefGoogle Scholar
  49. Waliser DE, Lau KM, Stern W, Jones C (2003a) Potential predictability of the Madden–Julian oscillation. Bull Am Meteorol Soc 84:33–50CrossRefGoogle Scholar
  50. Waliser DE, Stern W, Schubert SD, Lau KM (2003b) Dynamic predictability of intraseasonal variability associated with the Asian summer monsoon. Q J R Meteorol Soc 129:2897–2925CrossRefGoogle Scholar
  51. Wang W, Schlesinger ME (1999) The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J Clim 12:1423–1457CrossRefGoogle Scholar
  52. Webster PJ, Hoyos CD (2004) Prediction of monsoon rainfall and river discharge on 15–30-day time scales. Bull Am Meteorol Soc 85:1745–1765CrossRefGoogle Scholar
  53. Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932CrossRefGoogle Scholar
  54. Wheeler MC, McBride JL (2005) Australian–Indonesian monsoon. In: Lau KM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system. Praxis, Springer, Berlin, pp 125–173CrossRefGoogle Scholar
  55. Xue Y, Cane MA, Zebiak SE (1997a) Predictability of a coupled model of ENSO using singular vector analysis. Part I: optimal growth in seasonal background and ENSO cycles. Mon Weather Rev 125:2043–2056CrossRefGoogle Scholar
  56. Xue Y, Cane MA, Zebiak SE (1997b) Predictability of a coupled model of ENSO using singular vector analysis. Part II: optimal growth and forecast skill. Mon Weather Rev 125:2057–2073CrossRefGoogle Scholar
  57. Yang SC, Kalnay E, Cai M, Rienecker MM (2008) Bred vectors and tropical pacific forecast errors in the NASA coupled general circulation model. Mon Weather Rev 136:1305–1326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • In-Sik Kang
    • 1
    Email author
  • Pyong-Hwa Jang
    • 1
  • Mansour Almazroui
    • 2
  1. 1.School of Earth and Environmental SciencesSeoul National UniversitySeoulKorea
  2. 2.Department of Meteorology, Center of Excellence for Climate Change ResearchKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations