Skip to main content

Advertisement

Log in

Influence of aerosol on clouds over the Indo-Gangetic Plain, India

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Using Total Ozone Mapping Spectrometer Aerosol Index (AI) and NCEP/NCAR reanalysis clouds data for the period 1979–1992, the influence of aerosol on the clouds (low and high cloud cover) over the Indo-Gangetic Plain (IGP) in India has been brought out for the first time in the present study. AI shows increasing tendency over the IGP suggesting that aerosol loading over this region increased significantly during the study period. In our analysis, High Cloud Cover (HCC) shows increasing trend and Low Cloud Cover (LCC) shows decreasing trend over the IGP during the same period. During pre-monsoon season when aerosol loading is more, HCC increases in positive correlation with AI. On the other hand, LCC show decreasing trend and is anti-correlated with AI. During summer monsoon, aerosol shows increasing trend but their effect on HCC and LCC is not seen to be significant. Similarly, the role of humidity on aerosol induced changes in HCC and LCC over the IGP region was also analyzed. In the low to moderate humid areas of IGP region (western and middle IGP), increasing AI leads to increase in HCC and decrease in LCC. On the other hand, in high humid areas (eastern IGP), increase in AI does not show any significant effect on HCC, but LCC shows positive trend. Therefore, we strongly argue that increasing aerosol loading enhances Cloud Condensation Nuclei over the region which in turn, alters the microphysical properties of clouds by reducing the size of cloud droplets, and atmospheric humidity controls the aerosol effect on clouds. During the recent period (2005–2010), similar features have also been observed over the IGP region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackerman AS, Toon OB, Stevens DE, Heymsfiels AJ, Ramamathan V, Welton EJ (2000) Reduction of tropical cloudiness by soot. Science 288:1042–1047

    Article  Google Scholar 

  • Albrecht BA (1989) Aerosol, cloud microphysics, and fractional cloudiness. Science 245:1227–1230

    Article  Google Scholar 

  • Andreae MO, Artaxo P, Brandão C, Carswell FE, Ciccioli P, da Costa AL, Culf AD, Esteves JL, Gash JHC, Grace J, Kabat P, Lelieveld J, Malhi Y, Manzi AO, Meixner FX, Nobre AD, Nobre C, Ruivo MdLP, Silva-Dias MA, Stefani P, Valentini R, von Jouanne J, Waterloo MJ (2002) Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: the LBAEUSTACH experiments. J Geophys Res 107(D20):8066. doi:10.1029/2001JD000524

    Article  Google Scholar 

  • Andreae MO, Rosenfeld D, Artaxo P, Costa AA, Frank GP, Longo KM, Silva-Dias MAF (2004) Smoking rain clouds over the Amazon. Science 303:1337–1342

    Article  Google Scholar 

  • Bedacht E, Gulev SK, Macke A (2007) Intercomparison of global cloud cover fields over oceans from the VOS observations and NCEP/NCAR reanalysis. Int J Climatol 27:1707–1719

    Article  Google Scholar 

  • Bréon FM, Tanré D, Generoso S (2002) Aerosol effect on cloud droplet size monitored from satellite. Science 295. doi:10.1126/science.1066434

  • Census of India (2001) India office of the registrar general and census commissioner, ministry of home affair. Gov. of India, New Delhi

    Google Scholar 

  • Chameides WL, Luo C, Saylor R, Streets D, Huang Y, Bergin M (2002) Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depths: indication of indirect effect. J Geophys Res 107. doi:10.1029/2000JD000208

  • Collier JC, Zhang GJ (2009) Aerosol direct forcing of the summer Indian monsoon as simulated by the NCAR CAM3. Clim Dyn 32:313–332

    Article  Google Scholar 

  • Feingold G, Remer LA, Ramaprasad J, Kaufman YJ (2001) Analysis of smoke impacts on clouds in Brazilian biomass burning regions: an extension of Twomey’s approach. J Geophys Res 106(D19):22907–22922

    Article  Google Scholar 

  • Feingold G, Eberhard Wynn L, Veron Dana E, Previdi M (2003) First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys Res Lett 30:1287. doi:10.1029/2002GL016633

    Article  Google Scholar 

  • Feingold G, Jiang H, Harrington JY (2005) On smoke suppression of clouds in Amazonia. Geophys Res Lett 32:L02840. doi:10.1029/2004GL021369

    Article  Google Scholar 

  • Ghude Sachin D, Fadnavis S, Beig G, Polade SD, Van der ARJ (2008) Detection of surface emission hotspots, trends and seasonal cycle from satellites-retrieved NO2 over India. J Geophys Res 113. doi:10.1029/2007JD009615

  • Ghude SD, Kulkarni SH, Kulkarni PS, Kanawade VP, Fadnavis S, Pokhrel S, Jena C, Beig G, Bortoli D (2011) Anomalous low tropo-spheric column ozone over Eastern India during severe drought event of monsoon 2002: a case study. Environ Sci Pollut Res 18:1442–1455

    Article  Google Scholar 

  • Girolamo LD, Bond TC, Bramer D, Diner DJ, Fettinger F, Kahn RA, Martonchik JV, Ramana MV, Ramanathan V, Rasch PJ (2004) Analysis of multi-angle imaging spectro-radiometer (MISR) aerosol optical depths over greater India during winter 2001–2004. Geophys Res Lett 31:L23115. doi:10.1029/2004GL021273

    Article  Google Scholar 

  • Griggs JA, Bamber JL (2008) Assessment of cloud cover characteristics in satellite datasets and reanalysis products for Greenland. J Clim 21:1837–1849

    Article  Google Scholar 

  • Gunn R, Phillips BB (1957) A experimental investigation of the effect of air pollution on the initiation of rain. J Meteorol 14:272–280

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1995) Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenario. In: Houghton JT, Meira Filho LG, Bruce J, Lee H, Callendar BA, Haites E, Harris N, Maskell K (eds) Cambridge Univ Press, New York, p 339

  • Jacobson MZ (2006) Effects of externally-through-internally-mixed soot inclusions within clouds and precipitation on global climate. Phys Chem A 110(21):6860–6873

    Article  Google Scholar 

  • Jiang H, Xue H, Teller A, Feingold G, Levin Z (2006) Aerosol effects on the lifetime of shallow cumulus. Geophys Res Lett 33:L14806. doi:10.1029/2006GL026024

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kister R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kaufman YJ, Fraser RS (1997) The effect of smoke particles on clouds and climate forcing. Science 277:1636–1639

    Article  Google Scholar 

  • Kaufman YJ, Koren I (2006) Smoke and pollution aerosol effect on cloud cover. Science 313:655–658. doi:10.1126/science.1126232

    Article  Google Scholar 

  • Kaufman YJ, Koren I, Remer LA, Rosenfeld D, Rudich Y (2005a) The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic ocean. Proc Nat Acad Sci 102(32):11207–11212

    Article  Google Scholar 

  • Kaufman YJ, Koren I, Remer LA, Rosenfeld D, Rudich Y (2005b) The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic ocean. Proc Nat Acad Sci USA 102(32):11207–11212

    Article  Google Scholar 

  • Kawamoto K (2006) Relationships between cloud properties and precipitation amount over the Amazon basin. Atmos Res 82:239–247

    Article  Google Scholar 

  • Khain AP, Rosenfeld D, Pokrovsky A (2005) Aerosol impact on the dynamics and microphysics of deep convective clouds. Q J R Meteorol Soc 131(611):2639–2663

    Article  Google Scholar 

  • Khain A, BenMoshe N, Pokrovsky A (2008) Factors determining the impact of aerosols on surface precipitation from clouds: attempt of classification. J Atmos Sci 65:1721–1748

    Article  Google Scholar 

  • Koch D, Del Genio AD (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10:7685–7696

    Article  Google Scholar 

  • Koren I, Kaufman YJ, Rosenfeld D, Remer LA, Rudich Y (2005) Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys Res Lett 32:L14828. doi:10.1029/2005GL023187

    Article  Google Scholar 

  • Krishnamurti TN, Chakraborty A, Martin A, Lau KM, Kim KM, Sud YC, Walker G (2009) Impact of Arabian Sea pollution on the Bay of Bengal winter monsoon rains. J Geophys Res 114:D06213. doi:10.1029/2008JD010679

    Article  Google Scholar 

  • Kruger O, Grassl H (2004) Albedo reduction by absorbing aerosols over China. Geophys Res Lett 31:L02108. doi:10.1029/2003GL019111

    Article  Google Scholar 

  • Lal DM, Ghude Sachin D, Patil SD, Kulkarni Santosh H, Jena C, Tiwari S, Srivastav Manoj K (2012) Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP) region, India. Atmos Res. doi:10.1016/j.atmosres.2012.02.014

    Google Scholar 

  • Lau K-M, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. doi:10.1029/2006GL027546

    Article  Google Scholar 

  • Lau WKM, Kim KM (2010) Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall. Geophys Res Lett 37:L16705. doi:10.1029/2010GL043255

    Article  Google Scholar 

  • Lau KM, Kim KM, Hsu NC, Singh RP (2008) Seasonal covariability of aerosol and precipitation over the Indian monsoon and adjacent deserts. GEWEX News 18(1):4–6

    Google Scholar 

  • Lau KM, Kim KM, Hsu CN, Holben BN (2009) Possible influences of air pollution, dust- and sandstorms on the Indian monsoon. WMO Bull 58:22–30

    Google Scholar 

  • Lin JC, Matsui T, Pielke Sr RA, Kummerow C (2006) Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study. J Geophys Res 111(D19204). doi:10.1029/2005JD006884

  • Lee SS (2011) Dependence of aerosol-precipitation interactions on humidity in a multiple-cloud system. Atmos Chem Phys 11:2179–2196

    Article  Google Scholar 

  • Lee SS, Donner LJ, Phillips VTJ, Ming Y (2008) Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Q J Roy Meteorol Soc 134:1201–1220

    Article  Google Scholar 

  • Luo C (2004) A global satellite view of aerosol cloud interactions. Atmos Chem Phys Dis 4:6823–6836

    Article  Google Scholar 

  • Lynn BH, Khain AP, Dudhia J, Rosenfeld D, Pokrovsky AS (2005) Spectral (Bin) microphysics coupled with a mesoscale model (MM5). Part I: Model description and first results. Mon Wea Rev 133(1):44–58

    Article  Google Scholar 

  • Matsui T, Masunaga H, Kreidenweis SM, Roger AP Sr, Tao WK, Chin M, Kaufman YJ (2006) Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle. J Geophys Res 111(D17204). doi:10.1029/2005JD006097

  • Middleton NJ (1986) A geography of dust storms in southwest Asia. Int J Climatol 6:183–196

    Article  Google Scholar 

  • Phillips V, Khain A, Pokrovsky A (2007) The influence of melting on the dynamics and precipitation production in maritime and continental storm-clouds. J Atmos Sci 64(2):338–359

    Article  Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40(1). doi:10.1029/2000RG000095

  • Radke LF, Coakely JA Jr, King MD (1989) Direct and remote sensing observations of the effects of ship on clouds. Science 246:1146–1148

    Article  Google Scholar 

  • Ramanathan V, Ramana MV (2005) Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Ganges Plains. Pure App Geophys 162:1609–1626

    Article  Google Scholar 

  • Ramanathan V, Chung C, Kim D, Betge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Nat Acad Sci USA 102:5326–5333

    Article  Google Scholar 

  • Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26:3105–3108

    Article  Google Scholar 

  • Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287:1793–1796

    Article  Google Scholar 

  • Rosenfeld D (2006) Aerosol–cloud interactions control of earth radiation and latent heat release budgets. Space Sci Rev 125(1–4):149–157

    Google Scholar 

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: how do aerosols affect precipitation? Science 321:1309–1313

    Article  Google Scholar 

  • Sarkar S, Chokngamwong R, Cervone G, Singh RP, Kafatos M (2006) Variability of aerosol optical depth and aerosol forcing over India. Adv Space Res 37:2153–2159

    Article  Google Scholar 

  • Sekiguchi M, Nakajima T, Suzuki K, Kawamoto K, Higurashi A, Rosenfeld D, Sano I, Mukai S (2003) A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J Geophys Res 108(D22):4699. doi:10.1029/2002JD003359

    Article  Google Scholar 

  • Singh RP, Dey S, Tripathi SN, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:D23206. doi:10.1029/2004JD004966

    Article  Google Scholar 

  • Song N, David O’C, Starr Donald J, Williams Wuebbles A, Larson Susan M (1996) Volcanic aerosols and interannual variation of high clouds. Geophys Res Lett 23:2657–2660

    Article  Google Scholar 

  • Spichtinger P, Cziczo DJ (2008) Aerosol–cloud interactions—a challenge for measurements and modeling at the cutting edge of cloud–climate interactions. Environ Res Lett 3. doi:10.1088/1748-9326/3/2/025002

  • Srivastava MK, Srivastava SK, Saha A, Tiwari S, Singh S, Dumka UC, Singh BP, Singh NP (2011) Aerosol optical properties over Delhi and Manora peak during a rare dust event in early April 2005. Int J Remote Sens 32:7939–7954

    Article  Google Scholar 

  • Ten Hoeve JE, Remer LA, Jacobson MZ (2011) Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: impacts of water vapor and land cover. Atmos Chem Phys 11:3021–3036

    Article  Google Scholar 

  • Tripathi SN, Tare V, Chinnam N, Srivastava AK, Dey S, Agarwal A, Kishore S, Lal RB, Manar M, Kanwade VP, Chauhan SSS, Sharma M, Reddy RR, Rama Gopal K, Narasimhulu K, Siva Sankara Reddy L, Gupta S, Lal S (2006) Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Programme Land Campaign II at a typical location in the Ganga basin: 1, Physical and optical properties. J Geophys Res 111. doi:10.1029/2006JD007278

  • Twomey W (1974) Pollution and the planetary albedo. Atmos Environ 8:1251–1256

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • Waner J, Twomey S (1967) The production of cloud nuclei by cane fires and the effects on cloud droplet concentration. J Atmos Sci 24:704–706

    Article  Google Scholar 

  • Wang C, Kim D, Ekman AML, Barth MC, Rasch PJ (2009) Impact of anthropogenic aerosols on Indian summer monsoon. Geophys Res Lett 36:L21704. doi:10.1029/2009GL040114

    Article  Google Scholar 

  • Weare BC (1992) Variations in nimbus-7 cloud estimates, Part I: zonal averages. J Clim 5:1496–1505

    Article  Google Scholar 

  • Williams E, Rosenfeld D, Madden N, Gerlach J, Gears N, Atkinson L, Dunnemann N, Frostrom G, Antonio M, Biazon B, Camargo R, Franca H, Gomes A, Lima M, Machado R, Manhaes S, Nachtigall L, Piva H, Quintiliano W, Machado L, Artaxo P, Roberts G, Renno N, Blakeslee R, Bailey J, Boccippio D, Betts A, Wolff D, Roy B, Halverson J, Rickenbach T, Fuentes J, Avelino E (2002) Contrasting convective regimes over the Amazon: implications for cloud electrification. J Geophys Res 107(D20):8082

    Article  Google Scholar 

  • Wylie DP, Menzel WP, WooIf HM, Strabala KI (1994) Four years of global cirrus cloud statistics using HIRS. J Clim 7:1972–1986

    Article  Google Scholar 

  • Xue H, Feingold G (2006) Large-eddy simulations of trade wind cumuli: investigation of aerosol indirect effects. J Atmos Sci 63:1605–1622

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Director, Indian Institute of Tropical Meteorology, Pune for all the necessary facilities provided to carry out this study and for his constant encouragement. The authors are also thankful to Mr. Abhay S. D. Rajput for his help in editing, the referees for their kind remarks and constructive suggestions to improve the manuscript and Giovanni (GES) for making their data available on their website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Lal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lal, D.M., Patil, S.D., Singh, H.N. et al. Influence of aerosol on clouds over the Indo-Gangetic Plain, India. Clim Dyn 41, 601–612 (2013). https://doi.org/10.1007/s00382-013-1775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1775-z

Keywords

Navigation