Skip to main content

Real-time multi-model decadal climate predictions

Abstract

We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus view to prevent over-confidence in forecasts from any single model, and establish current collective capability. We stress that the forecast is experimental, since the skill of the multi-model system is as yet unknown. Nevertheless, the forecast systems used here are based on models that have undergone rigorous evaluation and individually have been evaluated for forecast skill. Moreover, it is important to publish forecasts to enable open evaluation, and to provide a focus on climate change in the coming decade. Initialized forecasts of the year 2011 agree well with observations, with a pattern correlation of 0.62 compared to 0.31 for uninitialized projections. In particular, the forecast correctly predicted La Niña in the Pacific, and warm conditions in the north Atlantic and USA. A similar pattern is predicted for 2012 but with a weaker La Niña. Indices of Atlantic multi-decadal variability and Pacific decadal variability show no signal beyond climatology after 2015, while temperature in the Niño3 region is predicted to warm slightly by about 0.5 °C over the coming decade. However, uncertainties are large for individual years and initialization has little impact beyond the first 4 years in most regions. Relative to uninitialized forecasts, initialized forecasts are significantly warmer in the north Atlantic sub-polar gyre and cooler in the north Pacific throughout the decade. They are also significantly cooler in the global average and over most land and ocean regions out to several years ahead. However, in the absence of volcanic eruptions, global temperature is predicted to continue to rise, with each year from 2013 onwards having a 50 % chance of exceeding the current observed record. Verification of these forecasts will provide an important opportunity to test the performance of models and our understanding and knowledge of the drivers of climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Boer GJ, Kharin VV, Merryfield WJ (2012) Decadal predictability and forecast skill. Clim Dyn (submitted)

  2. Brohan P, Kennedy J, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106

    Article  Google Scholar 

  3. Chikamoto Y, Kimoto M, Ishii M, Mochizuki T, Sakamoto TT, Tatebe H, Komuro Y, Watanabe M, Nozawa T, Shiogama H, Mori M, Yasunaka S, Imada Y (2012) An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC. Clim Dyn. doi:10.1007/s00382-012-1351-y

    Google Scholar 

  4. Collins WD et al (2006) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143

    Article  Google Scholar 

  5. DelSole T, Yang X, Tippett MK (2012) Is unequal weighting significantly better than equal weighting for multi-model forecasting? Q J R Meteorol Soc. doi:10.1002/qj.1961

    Google Scholar 

  6. Delworth TL, Zhang R, Mann ME (2007) Decadal to centennial variability of the Atlantic from observations and models. In: Ocean circulation: mechanisms and impacts. Geophysical monograph series 173. American Geophysical Union, Washington, DC, pp 131–148

  7. Du H, Doblas-Reyes FJ, García-Serrano J, Guemas V, Soufflet Y, Wouters B (2012) Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Clim Dyn. doi:10.1007/s00382-011-1285-9

    Google Scholar 

  8. Dunstone NJ, Smith DM, Eade R (2011) Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude north Atlantic ocean. Geophys Res Lett 38:L14701. doi:10.1029/2011GL047949

    Article  Google Scholar 

  9. Eade R, Hamilton E, Smith DM, Graham RJ, Scaife AA (2012) Forecasting the number of extreme daily events out to a decade ahead. J Geophys Res 117:D21110. doi:10.1029/2012JD018015

  10. Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:L08706

    Article  Google Scholar 

  11. Fyfe JC, Merryfield WJ, Kharin V, Boer GJ, Lee W-S, von Salzen K (2011) Skillful predictions of decadal trends in global mean surface temperature. Geophys Res Lett 38:L22801. doi:10.1029/2011GL049508

    Article  Google Scholar 

  12. García-Serrano J, Doblas-Reyes FJ (2012) On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Clim Dyn. doi:10.1007/s00382-012-1413-1

    Google Scholar 

  13. Goddard L, Kumar A, Solomon A, Smith D, Boer G, Gonzalez P, Kharin V, Merryfield W, Deser C, Mason S, Kirtman B, Msadek R, Sutton R, Hawkins E, Fricker T, Hegerl G, Ferro C, Stephenson D, Meehl GA, Stockdale T, Burgman R, Greene A, Kushnir Y, Newman M, Carton J, Fukumori I, Delworth T (2012) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn. doi:10.1007/s00382-012-1481-2

  14. Hamilton E, Eade R, Graham RJ, Scaife AA, Smith DM, Maidens A, MacLachlan C (2012) Forecasting the number of extreme daily events on seasonal timescales. J Geophys Res 117:D03114. doi:10.1029/2011JD016541

    Article  Google Scholar 

  15. Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449. doi:10.5194/acp-11-13421-2011

    Article  Google Scholar 

  16. Hawkins E, Robson J, Sutton R, Smith D, Keenlyside N (2011) Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. Clim Dyn 37:2459–2509. doi:10.1007/s00382-011-1023-3

    Google Scholar 

  17. Hazeleger W et al (2010) EC-earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91:1357–1363. doi:10.1175/2010BAMS2877.1

    Article  Google Scholar 

  18. Hazeleger W et al (2012) EC-earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn. doi:10.1007/s00382-011-1228-5

    Google Scholar 

  19. Ho CH, Hawkins E, Shaffrey L, Underwood F (2012) Statistical decadal predictions for sea surface temperatures: a benchmark for dynamical GCM predictions. Clim Dyn. doi:10.1007/s00382-012-1531-9

    Google Scholar 

  20. Hoerling M et al (2011) On North American decadal climate for 2011–20. J Clim 24:4519–4528. doi:10.1175/2011JCLI4137.1

    Article  Google Scholar 

  21. ICPO (International CLIVAR Project Office) (2011) Data and bias correction for decadal climate predictions. International CLIVAR Project Office, CLIVAR Publication Series No. 150, 6 pp. Available from http://eprints.soton.ac.uk/171975/1/150_Bias_Correction.pdf

  22. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  23. Katsman CA, van Oldenborgh GJ (2011) Tracing the upper ocean’s ‘missing heat’. Geophys Res Lett 38:L14610

    Google Scholar 

  24. Kaufmann RK, Kauppib H, Mann ML, Stock JH (2011) Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc Natl Acad Sci USA 108:11790–11793

    Article  Google Scholar 

  25. Keenlyside N, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88

    Article  Google Scholar 

  26. Khasnis A, Nettleman MD (2005) Global warming and infectious disease. Arch Med Res 36:689–696. doi:10.1016/y.aremed.2005.03.041

    Article  Google Scholar 

  27. Kim H-M, Webster PJ, Curry JA (2012) Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys Res Lett 39:L10701. doi:10.1029/2012GL051644

    Google Scholar 

  28. Kirtman BP, Min D (2009) Multi-model ensemble ENSO prediction with CCSM and CFS. Mon Weather Rev. doi:10.1175/2009MWR2672.1

    Google Scholar 

  29. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  30. Knight JR, Folland CK, Scaife AA (2006) Climatic impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706. doi:10.1029/2006GL026242

    Article  Google Scholar 

  31. Knight JR, Kennedy J, Folland C, Harris G, Jones GS, Palmer M, Parker D, Scaife A, Stott P (2009) Do global temperature trends over the last decade falsify climate predictions? Bull Am Meteorol Soc 90:S1–S196

    Google Scholar 

  32. Kopp G, Lean JL (2011) A new low value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38:L01706. doi:10.1029/2010GL045777

    Article  Google Scholar 

  33. Lean J, Rind D (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701. doi:10.1029/2008GL034864

    Article  Google Scholar 

  34. Lean JL, Rind DH (2009) How will earth’s surface temperature change in future decades? Geophys Res Lett 36:L15708. doi:10.1029/2009GL038932

    Article  Google Scholar 

  35. Matei D, Pohlmann H, Jungclaus J, Müller WA, Haak H, Marotzke J (2012) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim. doi:10.1175/JCLI-D-11-00633.1

  36. Meehl GA, Stocker TF, Collins W, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  37. Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene A, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction: can it be skillful? Bull Am Meteorol Soc 90:1467–1485

    Article  Google Scholar 

  38. Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Chang 1:360–364. doi:10.1038/NCLIMATE1229

    Article  Google Scholar 

  39. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109(1–2):213–241

    Article  Google Scholar 

  40. Mendelsohn R, Basist A, Dinar A, Kurukulasuriya P, Williams C (2007) What explains agricultural performance: climate normals or climate variance? Clim Chang 81:85–99. doi:10.1007/s10584-006-9186-3

    Article  Google Scholar 

  41. Merryfield WJ, Lee W-S, Boer GJ, Kharin VV, Scinocca JF, Flato GM, Ajayamohan RS, Fyfe JC, Tang Y, Polavarapu S (2012) The Canadian seasonal to interannual prediction system. Part I: models and Initialization. Mon Weather Rev (submitted)

  42. Mochizuki T, Ishiia M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa T, Sakamoto TT, Shiogama H, Awaji T, Sugiura N, Toyoda T, Yasunaka S, Tatebe H, Mori M (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci 107:1833–1837

    Article  Google Scholar 

  43. Müller WA, Baehr J, Haak H, Jungclaus JJ, Kröger J, Matei D, Notz D, Pohlmann H, von Storch JS, Marotzke J (2012) Forecast skill of multi-year seasonal means with the MPI decadal prediction system. Geophys Res Lett. doi:10.1029/2012GL053326

  44. Pohlmann H, Jungclaus J, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  45. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  46. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi:10.1126/science.1139540

    Article  Google Scholar 

  47. Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife AA (2010) Skilful multi-year predictions of Atlantic hurricane frequency. Nat Geosci. doi:10.1038/ngeo1004

    Google Scholar 

  48. Solomon S et al (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223

    Article  Google Scholar 

  49. Solomon S et al (2011) The persistently variable ‘background’ stratospheric aerosol layer and global climate change. Science 333:866–870

    Article  Google Scholar 

  50. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  51. Tatebe H, Ishii M, Mochizuki T, Chikamoto Y, Sakamoto TT, Komuro Y, Mori M, Yasunaka S, Watanabe M, Ogochi K, Suzuki T, Nishimura T, Kimoto M (2012) Initialization of the climate model MIROC for decadal prediction with hydographic data assimilation. J Meteorol Soc Jpn (Special issue on the recent development on climate models and future climate projections) 90A:275–294

  52. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 92:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  53. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704

    Article  Google Scholar 

  54. van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Skill in the trend and internal variability in a multi-model decadal prediction ensemble. Clim Dyn 38(7):1263–1280. doi:10.1007/s00382-012-1313-4

    Article  Google Scholar 

  55. Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of Meteorological Research Institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Jpn 90A:23–64. doi:10.2151/jmsj.2012-A02

    Article  Google Scholar 

  56. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

  57. Zhang S, Rosati A (2010) An inflated ensemble filter for ocean data assimilation with a biased coupled GCM. Mon Weather Rev 138:3905–3931

    Article  Google Scholar 

  58. Zhang S, Harrison MJ, Rosati A, Wittenberg A (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic studies. Mon Weather Rev 135:3541–3564

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), and the EU FP7 THOR and COMBINE projects. MPI work was supported by the BMBF Nordatlantik and MiKlip projects. Ben Kirtman was supported by NOAA grants NA10OAR4320143 and NA10OAR4310203. IC3 work was supported by the EU-funded QWeCI (FP7-ENV-2009-1-243964) and CLIM-RUN projects (FP7-ENV-2010-265192), the MICINN-funded RUCSS (CGL2010-20657) projects and the Catalan Government. The IC3 authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Red Española de Supercomputación (RES), the European Centre for Medium-Range Weather Forecasts (ECMWF) under the special project SPESICCF, and Muhammad Asif for his invaluable support in running the experiments. NASA supported J. Lean. MIROC work was supported by the KAKUSHIN program of the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The Earth Simulator of JAMSTEC was employed to perform MIROC experiments. MRI work was supported by the Japan Meteorological Agency research program and partly by the KAKUSHIN Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Doug M. Smith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 86 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, D.M., Scaife, A.A., Boer, G.J. et al. Real-time multi-model decadal climate predictions. Clim Dyn 41, 2875–2888 (2013). https://doi.org/10.1007/s00382-012-1600-0

Download citation

Keywords

  • Decadal climate prediction
  • Multi-model ensemble
  • Forecast