Child's Nervous System

, Volume 34, Issue 5, pp 939–946 | Cite as

Use of neuroimaging measurements of optic nerve sheath diameter to assess intracranial pressure in craniosynostosis

  • Mostafa Haredy
  • Giulio Zuccoli
  • Mandeep Tamber
  • Amani Davis
  • Ken Nischal
  • Jesse A. Goldstein
Original Paper

Abstract

Purpose

This study aims to evaluate accuracy of optic nerve sheath diameter (ONSD) measurements obtained by magnetic resonance imaging (MRI) in patients with craniosynostosis (CS) for detection of high intracranial pressure (ICP) and to correlate MRI-derived ONSD measurements with those obtained by computed tomography (CT) scans in CS patients.

Methods

A retrospective review was conducted on CS patients who had MRI- and age-matched controls with normal MRI. Diagnosis of intracranial hypertension was based on presence of papilledema, direct ICP monitoring, and/or lumbar puncture. The search also included patients with MRI and CT done within 30 days apart. ONSDs were measured 3 mm behind the globe on both modalities.

Results

The study identified 56 CS patients (mean age 3.8 ± 3.47 years) and 49 controls (mean age 3.7 ± 3.62 years). Mean ONSD in patients with high ICP was significantly higher than in patients without high ICP (P = 0.0001) and in controls (P < 0.0001). The optimal ONSD threshold for predicting raised ICP in patients >1 year old was 6 mm (71.4% sensitivity, 89.7% specificity). Nineteen patients with 38 single-eye MRI/CT pairs were identified. Substantial agreement between both modalities resulted (r = 0.959, 95% CI 0.923–0.978), and Bland and Altman Plot analysis showed that 95% of measurements fell within limits of agreement (1.96 SD; ± 0.6 mm).

Conclusion

In CS patients, ONSD measured by MRI represent indirect non-invasive means of ICP assessment. Both MRI and CT measurements of ONSD gave comparable results, and the use of CT-derived ONSD measurements may give some idea about ICP in CS patients.

Keywords

Intracranial hypertension Magnetic resonance imaging Computed tomography Optic nerve sheath diameter Craniosynostosis 

Notes

Compliance with ethical standards

The study was approved by the institutional review board.

Conflict of interest

The authors have no potential conflict of interest.

References

  1. 1.
    Cohen MM Jr, MacLean RE (2000) Craniosynostosis. Diagnosis, evaluation, and management, 2nd edn. Oxford University Press, New York, NYGoogle Scholar
  2. 2.
    Thompson DN, Malcolm GP, Jones BM et al (1995) Intracranial pressure in single-suture craniosynostosis. Pediatr Neurosurg 22(5):235–240.  https://doi.org/10.1159/000120907 CrossRefPubMedGoogle Scholar
  3. 3.
    Tamburrini G, Caldarelli M, Massimi L et al (2005) Intracranial pressure monitoring in children with single suture and complex craniosynostosis: a review. Childs Nerv Syst 21:913–921CrossRefPubMedGoogle Scholar
  4. 4.
    Renier D, Sainte-Rose C, Marchac D et al (1982) Intracranial pressure in craniostenosis. J Neurosurg 57:370–377CrossRefPubMedGoogle Scholar
  5. 5.
    Thompson DN, Harkness W, Jones B et al (1995) Subdural intracranial pressure monitoring in craniosynostosis: its role in surgical management. Childs Nerv Syst 11:269–275CrossRefPubMedGoogle Scholar
  6. 6.
    Hayward RD, Nischal KK (2004) Management of raised intracranial pressure. In: Hayward RD, Jones B, Dunaway D, Evans R (eds) The clinical management of craniosynostosis. MacKeith Publications, London, pp 137–160Google Scholar
  7. 7.
    Blaha M, Lazar D, Winn RH et al (2003) Hemorrhagic complications of intracranial pressure monitors in children. Pediatr Neurosurg 39:27–31CrossRefPubMedGoogle Scholar
  8. 8.
    Pople IK, Muhlbauer MS, Sanford RA, Kirk E (1995) Results and complications of intracranial pressure monitoring in 303 children. Pediatr Neurosurg 23(2):64–67.  https://doi.org/10.1159/000120938 CrossRefPubMedGoogle Scholar
  9. 9.
    Tuite GF, Chong WK, Evanson J, Narita A, Taylor D, Harkness WF, Jones BM, Hayward RD (1996) The effectiveness of papilledema as an indicator of raised intracranial pressure in children with craniosynostosis. Neurosurgery 38(2):272–278.  https://doi.org/10.1097/00006123-199602000-00009 CrossRefPubMedGoogle Scholar
  10. 10.
    Khan SH, Britto JA, Evans RD, Nischal KK (2005) Expression of FGFR2 and FGFR3 in the normal human fetal orbit. Br J Ophthalmol 89(12):1643–1645.  https://doi.org/10.1136/bjo.2005.075978 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xu W, Gerety P, Aleman T, Swanson J, Taylor J (2016) Noninvasive methods of detecting increased intracranial pressure. Childs Nerv Syst 32(8):1371–1386.  https://doi.org/10.1007/s00381-016-3143-x CrossRefPubMedGoogle Scholar
  12. 12.
    Skau M, Milea D, Sander B et al (2011) OCT for optic disc evaluation in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol 249:723–730CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Y, Duan YY, Zhou HY, Yuan LJ, Zhang L, Wang W, Li LH, Li L (2014) Middle cerebral arterial flow changes on transcranial color and spectral Doppler sonography in patients with increased intracranial pressure. J Ultrasound Med 33(12):2131–2136.  https://doi.org/10.7863/ultra.33.12.2131 CrossRefPubMedGoogle Scholar
  14. 14.
    Liasis A, Nischal KK, Walters B, Thompson D, Hardy S, Towell A, Dunaway D, Jones B, Evans R, Hayward R (2006) Monitoring visual function in children with syndromic craniosynostosis: a comparison of three methods. Arch Ophthalmol 124(8):1119–1126.  https://doi.org/10.1001/archopht.124.8.1119 CrossRefPubMedGoogle Scholar
  15. 15.
    Thompson DA, Liasis A, Hardy S et al (2006) Prevalence of abnormal pattern reversal visual-evoked potentials in craniosynostosis. Plast Reconstr Surg 118:184–189CrossRefPubMedGoogle Scholar
  16. 16.
    Helmke K, Hansen HC (1996) Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension. I. Experimental study. Pediatr Radiol 26(10):701–705.  https://doi.org/10.1007/BF01383383 CrossRefPubMedGoogle Scholar
  17. 17.
    Geeraerts T, Newcombe VF, Coles JP et al (2008) Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care 12(5):R114.  https://doi.org/10.1186/cc7006 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Watanabe A, Kinouchi H, Horikoshi T et al (2008) Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg 109:255–258CrossRefPubMedGoogle Scholar
  19. 19.
    Vorona GA, Zuccoli G, Sutcavage T et al (2013) The use of adaptive statistical iterative reconstruction in pediatric head CT: a feasibility study. AJNR Am J Neuroradiol 34(1):205–211CrossRefPubMedGoogle Scholar
  20. 20.
    Dubourg J, Javouhey E, Geeraerts T et al (2011) Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 37(7):1059–1068CrossRefPubMedGoogle Scholar
  21. 21.
    Young A, Guilfoyle M, Donnelly J et al (2017) Correlating optic nerve sheath diameter with opening intracranial pressure in pediatric traumatic brain injury. Pediatr Res 81(3):443–447CrossRefPubMedGoogle Scholar
  22. 22.
    Watanabe A, Horikoshi T, Uchida M et al (2008) Decreased diameter of the optic nerve sheath associated with CSF hypovolemia. AJNR Am J Neuroradiol 29:863–864CrossRefPubMedGoogle Scholar
  23. 23.
    Rohr A, Jensen U, Riedel C et al (2010) MR imaging of the optic nerve sheath in patients with craniospinal hypotension. AJNR Am J Neuroradiol 31:1752–1757CrossRefPubMedGoogle Scholar
  24. 24.
    Choi SH, Min KT, Park EK, Kim MS, Jung JH, Kim H (2015) Ultrasonography of the optic nerve sheath to assess intracranial pressure changes after ventriculo-peritoneal shunt surgery in children with hydrocephalus: a prospective observational study. Anaesthesia 70(11):1268–1273.  https://doi.org/10.1111/anae.13180 CrossRefPubMedGoogle Scholar
  25. 25.
    Padayachy L, Kilborn T, Carrara H et al (2015) Change in optic nerve sheath diameter as a radiological marker of outcome from endoscopic third ventriculostomy in children. Childs Nerv Syst 31(5):721–728CrossRefPubMedGoogle Scholar
  26. 26.
    Ballantyne J, Hollman A, Hamilton R et al (1999) Transorbital optic nerve sheath ultrasonography in normal children. Clin Radiol 54(11):740–742CrossRefPubMedGoogle Scholar
  27. 27.
    Kalantari H, Jaiswal R, Bruck I et al (2013) Correlation of optic nerve sheath diameter measurements by computed tomography and magnetic resonance imaging. Am J Emerg Med 31(11):1595–1597CrossRefPubMedGoogle Scholar
  28. 28.
    Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A (2008) Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care 12(3):R67.  https://doi.org/10.1186/cc6897 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Moretti R, Pizzi B, Cassini F et al (2009) Reliability of optic nerve ultrasound for the evaluation of patients with spontaneous intracranial hemorrhage. Neurocrit Care 11:406–410CrossRefPubMedGoogle Scholar
  30. 30.
    Newman WD, Hollman AS, Dutton GN, Carachi R (2002) Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol 86(10):1109–1113.  https://doi.org/10.1136/bjo.86.10.1109 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Helmke K, Hansen HC (1996) Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension II. Patient study. Pediatr Radiol 26(10):706–710.  https://doi.org/10.1007/BF01383384 CrossRefPubMedGoogle Scholar
  32. 32.
    Steinborn M, Friedmann M, Hahn H et al (2015) Normal values for transbulbar sonography and magnetic resonance imaging of the optic nerve sheath diameter (ONSD) in children and adolescents. Ultraschall Med 36(1):54–58PubMedGoogle Scholar
  33. 33.
    Steinborn M, Friedmann M, Makowski C et al (2016) High resolution transbulbar sonography in children with suspicion of increased intracranial pressure. Childs Nerv Syst 32(4):655–660CrossRefPubMedGoogle Scholar
  34. 34.
    Padayachy L, Padayachy V, Galal U et al (2016) The relationship between transorbital ultrasound measurement of the optic nerve sheath diameter (ONSD) and invasively measured ICP in children: part II: age-related ONSD cut-off values and patency of the anterior fontanelle. Childs Nerv Syst 32(10):1779–1785CrossRefPubMedGoogle Scholar
  35. 35.
    Driessen C, Bannink N, Lequin M et al (2011) Are ultrasonography measurements of optic nerve sheath diameter an alternative to funduscopy in children with syndromic craniosynostosis? J Neurosurg Pediatr 8(3):329–334CrossRefPubMedGoogle Scholar
  36. 36.
    Driessen C, van Veelen ML, Lequin M et al (2012) Nocturnal ultrasound measurements of optic nerve sheath diameter correlate with intracranial pressure in children with craniosynostosis. Plast Reconstr Surg 130(3):448e–451e.  https://doi.org/10.1097/PRS.0b013e31825dc1f1 CrossRefPubMedGoogle Scholar
  37. 37.
    Padayachy LC, Padayachy V, Galal U et al (2016) The relationship between transorbital ultrasound measurement of the optic nerve sheath diameter (ONSD) and invasively measured ICP in children: part I: repeatability, observer variability and general analysis. Childs Nerv Syst 32(10):1769–1778CrossRefPubMedGoogle Scholar
  38. 38.
    Taylor W, Hayward R, Lasjaunias P et al (2001) Enigma of raised intracranial pressure in patients with complex craniosynostosis: the role of abnormal intracranial venous drainage. J Neurosurg 94(3):377–385CrossRefPubMedGoogle Scholar
  39. 39.
    Kimberly H, Shah S, Marill K et al (2008) Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med 15(2):201–204CrossRefPubMedGoogle Scholar
  40. 40.
    Hansen H, Lagrèze W, Krueger O et al (2011) Dependence of the optic nerve sheath diameter on acutely applied subarachnoidal pressure—an experimental ultrasound study. Acta Ophthalmol 89(6):e528–e532CrossRefPubMedGoogle Scholar
  41. 41.
    Bekerman I, Kimiagar I, Sigal T et al (2016) Monitoring of intracranial pressure by CT-defined optic nerve sheath diameter. J Neuroimaging 26(3):309–314CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mostafa Haredy
    • 1
    • 2
  • Giulio Zuccoli
    • 3
  • Mandeep Tamber
    • 4
  • Amani Davis
    • 5
  • Ken Nischal
    • 5
  • Jesse A. Goldstein
    • 1
  1. 1.Department of Plastic Surgery – Cleft-Craniofacial Center, Children’s Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Plastic Surgery Department – Cleft and Craniofacial UnitSohag University HospitalSohagEgypt
  3. 3.Department of Radiology, Children’s Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghUSA
  4. 4.Department of Neurosurgery, Children’s Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghUSA
  5. 5.Department of Ophthalmology, Children’s Hospital of PittsburghUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations