Skip to main content

Advertisement

Log in

Use of neuroimaging measurements of optic nerve sheath diameter to assess intracranial pressure in craniosynostosis

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

This study aims to evaluate accuracy of optic nerve sheath diameter (ONSD) measurements obtained by magnetic resonance imaging (MRI) in patients with craniosynostosis (CS) for detection of high intracranial pressure (ICP) and to correlate MRI-derived ONSD measurements with those obtained by computed tomography (CT) scans in CS patients.

Methods

A retrospective review was conducted on CS patients who had MRI- and age-matched controls with normal MRI. Diagnosis of intracranial hypertension was based on presence of papilledema, direct ICP monitoring, and/or lumbar puncture. The search also included patients with MRI and CT done within 30 days apart. ONSDs were measured 3 mm behind the globe on both modalities.

Results

The study identified 56 CS patients (mean age 3.8 ± 3.47 years) and 49 controls (mean age 3.7 ± 3.62 years). Mean ONSD in patients with high ICP was significantly higher than in patients without high ICP (P = 0.0001) and in controls (P < 0.0001). The optimal ONSD threshold for predicting raised ICP in patients >1 year old was 6 mm (71.4% sensitivity, 89.7% specificity). Nineteen patients with 38 single-eye MRI/CT pairs were identified. Substantial agreement between both modalities resulted (r = 0.959, 95% CI 0.923–0.978), and Bland and Altman Plot analysis showed that 95% of measurements fell within limits of agreement (1.96 SD; ± 0.6 mm).

Conclusion

In CS patients, ONSD measured by MRI represent indirect non-invasive means of ICP assessment. Both MRI and CT measurements of ONSD gave comparable results, and the use of CT-derived ONSD measurements may give some idea about ICP in CS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cohen MM Jr, MacLean RE (2000) Craniosynostosis. Diagnosis, evaluation, and management, 2nd edn. Oxford University Press, New York, NY

    Google Scholar 

  2. Thompson DN, Malcolm GP, Jones BM et al (1995) Intracranial pressure in single-suture craniosynostosis. Pediatr Neurosurg 22(5):235–240. https://doi.org/10.1159/000120907

    Article  CAS  PubMed  Google Scholar 

  3. Tamburrini G, Caldarelli M, Massimi L et al (2005) Intracranial pressure monitoring in children with single suture and complex craniosynostosis: a review. Childs Nerv Syst 21:913–921

    Article  CAS  PubMed  Google Scholar 

  4. Renier D, Sainte-Rose C, Marchac D et al (1982) Intracranial pressure in craniostenosis. J Neurosurg 57:370–377

    Article  CAS  PubMed  Google Scholar 

  5. Thompson DN, Harkness W, Jones B et al (1995) Subdural intracranial pressure monitoring in craniosynostosis: its role in surgical management. Childs Nerv Syst 11:269–275

    Article  CAS  PubMed  Google Scholar 

  6. Hayward RD, Nischal KK (2004) Management of raised intracranial pressure. In: Hayward RD, Jones B, Dunaway D, Evans R (eds) The clinical management of craniosynostosis. MacKeith Publications, London, pp 137–160

    Google Scholar 

  7. Blaha M, Lazar D, Winn RH et al (2003) Hemorrhagic complications of intracranial pressure monitors in children. Pediatr Neurosurg 39:27–31

    Article  PubMed  Google Scholar 

  8. Pople IK, Muhlbauer MS, Sanford RA, Kirk E (1995) Results and complications of intracranial pressure monitoring in 303 children. Pediatr Neurosurg 23(2):64–67. https://doi.org/10.1159/000120938

    Article  CAS  PubMed  Google Scholar 

  9. Tuite GF, Chong WK, Evanson J, Narita A, Taylor D, Harkness WF, Jones BM, Hayward RD (1996) The effectiveness of papilledema as an indicator of raised intracranial pressure in children with craniosynostosis. Neurosurgery 38(2):272–278. https://doi.org/10.1097/00006123-199602000-00009

    Article  CAS  PubMed  Google Scholar 

  10. Khan SH, Britto JA, Evans RD, Nischal KK (2005) Expression of FGFR2 and FGFR3 in the normal human fetal orbit. Br J Ophthalmol 89(12):1643–1645. https://doi.org/10.1136/bjo.2005.075978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu W, Gerety P, Aleman T, Swanson J, Taylor J (2016) Noninvasive methods of detecting increased intracranial pressure. Childs Nerv Syst 32(8):1371–1386. https://doi.org/10.1007/s00381-016-3143-x

    Article  PubMed  Google Scholar 

  12. Skau M, Milea D, Sander B et al (2011) OCT for optic disc evaluation in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol 249:723–730

    Article  PubMed  Google Scholar 

  13. Wang Y, Duan YY, Zhou HY, Yuan LJ, Zhang L, Wang W, Li LH, Li L (2014) Middle cerebral arterial flow changes on transcranial color and spectral Doppler sonography in patients with increased intracranial pressure. J Ultrasound Med 33(12):2131–2136. https://doi.org/10.7863/ultra.33.12.2131

    Article  PubMed  Google Scholar 

  14. Liasis A, Nischal KK, Walters B, Thompson D, Hardy S, Towell A, Dunaway D, Jones B, Evans R, Hayward R (2006) Monitoring visual function in children with syndromic craniosynostosis: a comparison of three methods. Arch Ophthalmol 124(8):1119–1126. https://doi.org/10.1001/archopht.124.8.1119

    Article  PubMed  Google Scholar 

  15. Thompson DA, Liasis A, Hardy S et al (2006) Prevalence of abnormal pattern reversal visual-evoked potentials in craniosynostosis. Plast Reconstr Surg 118:184–189

    Article  CAS  PubMed  Google Scholar 

  16. Helmke K, Hansen HC (1996) Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension. I. Experimental study. Pediatr Radiol 26(10):701–705. https://doi.org/10.1007/BF01383383

    Article  CAS  PubMed  Google Scholar 

  17. Geeraerts T, Newcombe VF, Coles JP et al (2008) Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care 12(5):R114. https://doi.org/10.1186/cc7006

    Article  PubMed  PubMed Central  Google Scholar 

  18. Watanabe A, Kinouchi H, Horikoshi T et al (2008) Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg 109:255–258

    Article  PubMed  Google Scholar 

  19. Vorona GA, Zuccoli G, Sutcavage T et al (2013) The use of adaptive statistical iterative reconstruction in pediatric head CT: a feasibility study. AJNR Am J Neuroradiol 34(1):205–211

    Article  CAS  PubMed  Google Scholar 

  20. Dubourg J, Javouhey E, Geeraerts T et al (2011) Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 37(7):1059–1068

    Article  PubMed  Google Scholar 

  21. Young A, Guilfoyle M, Donnelly J et al (2017) Correlating optic nerve sheath diameter with opening intracranial pressure in pediatric traumatic brain injury. Pediatr Res 81(3):443–447

    Article  PubMed  Google Scholar 

  22. Watanabe A, Horikoshi T, Uchida M et al (2008) Decreased diameter of the optic nerve sheath associated with CSF hypovolemia. AJNR Am J Neuroradiol 29:863–864

    Article  CAS  PubMed  Google Scholar 

  23. Rohr A, Jensen U, Riedel C et al (2010) MR imaging of the optic nerve sheath in patients with craniospinal hypotension. AJNR Am J Neuroradiol 31:1752–1757

    Article  CAS  PubMed  Google Scholar 

  24. Choi SH, Min KT, Park EK, Kim MS, Jung JH, Kim H (2015) Ultrasonography of the optic nerve sheath to assess intracranial pressure changes after ventriculo-peritoneal shunt surgery in children with hydrocephalus: a prospective observational study. Anaesthesia 70(11):1268–1273. https://doi.org/10.1111/anae.13180

    Article  PubMed  Google Scholar 

  25. Padayachy L, Kilborn T, Carrara H et al (2015) Change in optic nerve sheath diameter as a radiological marker of outcome from endoscopic third ventriculostomy in children. Childs Nerv Syst 31(5):721–728

    Article  PubMed  Google Scholar 

  26. Ballantyne J, Hollman A, Hamilton R et al (1999) Transorbital optic nerve sheath ultrasonography in normal children. Clin Radiol 54(11):740–742

    Article  CAS  PubMed  Google Scholar 

  27. Kalantari H, Jaiswal R, Bruck I et al (2013) Correlation of optic nerve sheath diameter measurements by computed tomography and magnetic resonance imaging. Am J Emerg Med 31(11):1595–1597

    Article  PubMed  Google Scholar 

  28. Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A (2008) Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care 12(3):R67. https://doi.org/10.1186/cc6897

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moretti R, Pizzi B, Cassini F et al (2009) Reliability of optic nerve ultrasound for the evaluation of patients with spontaneous intracranial hemorrhage. Neurocrit Care 11:406–410

    Article  PubMed  Google Scholar 

  30. Newman WD, Hollman AS, Dutton GN, Carachi R (2002) Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol 86(10):1109–1113. https://doi.org/10.1136/bjo.86.10.1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Helmke K, Hansen HC (1996) Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension II. Patient study. Pediatr Radiol 26(10):706–710. https://doi.org/10.1007/BF01383384

    Article  CAS  PubMed  Google Scholar 

  32. Steinborn M, Friedmann M, Hahn H et al (2015) Normal values for transbulbar sonography and magnetic resonance imaging of the optic nerve sheath diameter (ONSD) in children and adolescents. Ultraschall Med 36(1):54–58

    CAS  PubMed  Google Scholar 

  33. Steinborn M, Friedmann M, Makowski C et al (2016) High resolution transbulbar sonography in children with suspicion of increased intracranial pressure. Childs Nerv Syst 32(4):655–660

    Article  PubMed  Google Scholar 

  34. Padayachy L, Padayachy V, Galal U et al (2016) The relationship between transorbital ultrasound measurement of the optic nerve sheath diameter (ONSD) and invasively measured ICP in children: part II: age-related ONSD cut-off values and patency of the anterior fontanelle. Childs Nerv Syst 32(10):1779–1785

    Article  PubMed  Google Scholar 

  35. Driessen C, Bannink N, Lequin M et al (2011) Are ultrasonography measurements of optic nerve sheath diameter an alternative to funduscopy in children with syndromic craniosynostosis? J Neurosurg Pediatr 8(3):329–334

    Article  PubMed  Google Scholar 

  36. Driessen C, van Veelen ML, Lequin M et al (2012) Nocturnal ultrasound measurements of optic nerve sheath diameter correlate with intracranial pressure in children with craniosynostosis. Plast Reconstr Surg 130(3):448e–451e. https://doi.org/10.1097/PRS.0b013e31825dc1f1

    Article  PubMed  Google Scholar 

  37. Padayachy LC, Padayachy V, Galal U et al (2016) The relationship between transorbital ultrasound measurement of the optic nerve sheath diameter (ONSD) and invasively measured ICP in children: part I: repeatability, observer variability and general analysis. Childs Nerv Syst 32(10):1769–1778

    Article  PubMed  Google Scholar 

  38. Taylor W, Hayward R, Lasjaunias P et al (2001) Enigma of raised intracranial pressure in patients with complex craniosynostosis: the role of abnormal intracranial venous drainage. J Neurosurg 94(3):377–385

    Article  CAS  PubMed  Google Scholar 

  39. Kimberly H, Shah S, Marill K et al (2008) Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med 15(2):201–204

    Article  PubMed  Google Scholar 

  40. Hansen H, Lagrèze W, Krueger O et al (2011) Dependence of the optic nerve sheath diameter on acutely applied subarachnoidal pressure—an experimental ultrasound study. Acta Ophthalmol 89(6):e528–e532

    Article  PubMed  Google Scholar 

  41. Bekerman I, Kimiagar I, Sigal T et al (2016) Monitoring of intracranial pressure by CT-defined optic nerve sheath diameter. J Neuroimaging 26(3):309–314

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Haredy.

Ethics declarations

The study was approved by the institutional review board.

Conflict of interest

The authors have no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haredy, M., Zuccoli, G., Tamber, M. et al. Use of neuroimaging measurements of optic nerve sheath diameter to assess intracranial pressure in craniosynostosis. Childs Nerv Syst 34, 939–946 (2018). https://doi.org/10.1007/s00381-018-3728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-018-3728-7

Keywords

Navigation