Bleeding events and mid-term mortality in the patients undergoing endovascular interventions for peripheral artery disease of the lower limbs based on the academic research consortium high bleeding risk criteria

Abstract

This study applied the Academic Research Consortium for HBR (ARC-HBR) criteria to peripheral artery disease (PAD) patients after Endovascular therapy (EVT) and assessed the prevalence of HBR, as well as the association between HBR and clinical outcomes. This is a single-center, non-randomized, controlled, and retrospective study. EVTs for symptomatic PAD are minimally invasive and efficient. Although bleeding can be a serious adverse event, the criteria for HBR and assessment of bleeding events in patients who underwent EVT have been limited. A total of 156 patients with PAD who underwent EVT were divided into two groups according to ARC-HBR criteria. The associations between HBR and bleeding events, which was defined as Bleeding Academic Research Consortium Type 3 or Type 5 bleeding within 1 year and all-cause mortality within 1 year, were analyzed. The percentage of patients who were categorized as having HBR was 75.0%. Bleeding events occurred in 12.6% of the patients. All bleeding events occurred in the HBR group, while no bleeding events occurred in the no-HBR group. (16.9% vs. 0.0%, respectively; p = 0.008). During the follow-up period, 11.1% of the patients had died. All-cause mortality was significantly higher in the HBR group than in the no-HBR group (14.7% vs. 0.0%, respectively; p = 0.019). Most patients with PAD were classified as having HBR as assessed by ARC-HBR criteria, and patients with HBR were at a higher risk of not only bleeding events but also mid-term mortality compared to those without HBR. ARC-HBR criteria can be a helpful parameter when treating PAD patients after EVT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45(Suppl S):S5–S67

    Article  Google Scholar 

  2. 2.

    Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, Norman PE, Sampson UK, Williams LJ, Mensah GA, Criqui MH (2013) Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 382(9901):1329–1340

    Article  Google Scholar 

  3. 3.

    Goodney PP, Beck AW, Nagle J, Welch HG, Zwolak RM (2009) National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J Vasc Surg 50(1):54–60

    Article  Google Scholar 

  4. 4.

    Kakkar AM, Abbott JD (2015) Percutaneous versus surgical management of lower extremity peripheral artery disease. Curr Atheroscler Rep 17(2):479

    Article  Google Scholar 

  5. 5.

    Spiliopoulos S, Karnabatidis D, Katsanos K, Diamantopoulos A, Ali T, Kitrou P, Cannavale A, Krokidis M (2016) Day-case treatment of peripheral arterial disease: results from a multi-center European study. Cardiovasc Intervent Radiol 39(12):1684–1691

    Article  Google Scholar 

  6. 6.

    Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF, Fowkes FG, Gillepsie I, Ruckley CV, Raab G, Storkey H (2005) Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 366(9501):1925–1934

    CAS  Article  Google Scholar 

  7. 7.

    Tang QH, Chen J, Hu CF, Zhang XL (2020) Comparison between endovascular and open surgery for the treatment of peripheral artery diseases: a meta-analysis. Ann Vasc Surg 62:484–495

    Article  Google Scholar 

  8. 8.

    Bhardwaj B, Spertus JA, Kennedy KF, Jones WS, Safley D, Tsai TT, Aronow HD, Vora AN, Pokharel Y, Kumar A, Attaran RR, Feldman DN, Armstrong E, Prasad A, Gray B, Salisbury AC (2019) Bleeding complications in lower-extremity peripheral vascular interventions: insights from the NCDR PVI registry. JACC Cardiovasc Interv 12(12):1140–1149

    Article  Google Scholar 

  9. 9.

    Urban P, Mehran R, Colleran R, Angiolillo DJ, Byrne RA, Capodanno D, Cuisset T, Cutlip D, Eerdmans P, Eikelboom J, Farb A, Gibson CM, Gregson J, Haude M, James SK, Kim HS, Kimura T, Konishi A, Laschinger J, Leon MB, Magee PFA, Mitsutake Y, Mylotte D, Pocock S, Price MJ, Rao SV, Spitzer E, Stockbridge N, Valgimigli M, Varenne O, Windhoevel U, Yeh RW, Krucoff MW, Morice MC (2019) Defining high bleeding risk in patients undergoing percutaneous coronary intervention. Circulation 140(3):240–261

    Article  Google Scholar 

  10. 10.

    Ward R, Huang Z, Rockhold FW, Baumgartner I, Berger JS, Blomster JI, Fowkes FGR, Katona BG, Mahaffey KW, Norgren L, Vemulapalli S, Povsic TJ, Mehta R, Hiatt WR, Patel MR, Jones WS (2020) Major bleeding in patients with peripheral artery disease: insights from the EUCLID trial. Am Heart J 220:51–58

    CAS  Article  Google Scholar 

  11. 11.

    Spiliopoulos S, Tsochatzis A, Festas G, Reppas L, Christidi F, Palialexis K, Brountzos E (2019) A new preprocedural score to predict bleeding complications of endovascular interventions for peripheral artery disease. J Endovasc Ther 26(6):816–825

    Article  Google Scholar 

  12. 12.

    Matsi PJ, Manninen HI (1998) Complications of lower-limb percutaneous transluminal angioplasty: a prospective analysis of 410 procedures on 295 consecutive patients. Cardiovasc Intervent Radiol 21(5):361–366

    CAS  Article  Google Scholar 

  13. 13.

    Baumann F, Husmann M, Benenati JF, Katzen BT, Del Conde I (2016) Bleeding risk profile in patients with symptomatic peripheral artery disease. I Endovasc Ther 23(3):468–471

    Article  Google Scholar 

  14. 14.

    Mehran R, Rao SV, Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, Kaul S, Wiviott SD, Menon V, Nikolsky E, Serebruany V, Valgimigli M, Vranckx P, Taggart D, Sabik JF, Cutlip DE, Krucoff MW, Ohman EM, Steg PG, White H (2011) Standardized bleeding definitions for cardiovascular clinical trials: a consensus report from the Bleeding Academic Research Consortium. Circulation 123(23):2736–2747

    Article  Google Scholar 

  15. 15.

    Patel MR, Conte MS, Cutlip DE, Dib N, Geraghty P, Gray W, Hiatt WR, Ho M, Ikeda K, Ikeno F, Jaff MR, Jones WS, Kawahara M, Lookstein RA, Mehran R, Misra S, Norgren L, Olin JW, Povsic TJ, Rosenfield K, Rundback J, Shamoun F, Tcheng J, Tsai TT, Suzuki Y, Vranckx P, Wiechmann BN, White CJ, Yokoi H, Krucoff MW (2015) Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from Peripheral Academic Research Consortium (PARC). J Am Coll Cardiol 65(9):931–941

    Article  Google Scholar 

  16. 16.

    Gillett MJ (2009) International Expert Committee report on the role of the A1c assay in the diagnosis of diabetes: Diabetes Care; 32(7): 1327–1334. Clin Biochem Rev 30(4):197–200

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Teramoto T, Sasaki J, Ishibashi S, Birou S, Daida H, Dohi S, Egusa G, Hiro T, Hirobe K, Iida M, Kihara S, Kinoshita M, Maruyama C, Ohta T, Okamura T, Yamashita S, Yokode M, Yokote K (2013) Executive summary of the Japan Atherosclerosis Society (JAS) guidelines for the diagnosis and prevention of atherosclerotic cardiovascular diseases in Japan—2012 version. J Atheroscler Thromb 20(6):517–523

    Article  Google Scholar 

  18. 18.

    Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53(6):982–992

    CAS  Article  Google Scholar 

  19. 19.

    Hussain MA, Al-Omran M, Creager MA, Anand SS, Verma S, Bhatt DL (2018) Antithrombotic therapy for peripheral artery disease: recent advances. J Am Coll Cardiol 71(21):2450–2467

    Article  Google Scholar 

  20. 20.

    Matić DM, Ašanin MR, Stanković S, Mrdović IB, Marinković JM, Kočev NI, Antonijević NM, Marjanović MM, Nešić ZI, Prostran MS, Stanković GR (2015) Incidence, predictors and prognostic implications of bleeding complicating primary percutaneous coronary intervention. Vojnosanit Pregl 72(7):589–595

    Article  Google Scholar 

  21. 21.

    Natsuaki M, Morimoto T, Shiomi H, Yamaji K, Watanabe H, Shizuta S, Kato T, Ando K, Nakagawa Y, Furukawa Y, Tada T, Nagao K, Kadota K, Toyofuku M, Kimura T (2019) Application of the Academic Research Consortium high bleeding risk criteria in an all-comers registry of percutaneous coronary intervention. Circ Cardiovasc Interv 12(11):e008307

    Article  Google Scholar 

  22. 22.

    Yeh RW, Secemsky EA, Kereiakes DJ, Normand SL, Gershlick AH, Cohen DJ, Spertus JA, Steg PG, Cutlip DE, Rinaldi MJ, Camenzind E, Wijns W, Apruzzese PK, Song Y, Massaro JM, Mauri L (2016) Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention. JAMA 315(16):1735–1749

    CAS  Article  Google Scholar 

  23. 23.

    Baber U, Mehran R, Giustino G, Cohen DJ, Henry TD, Sartori S, Ariti C, Litherland C, Dangas G, Gibson CM, Krucoff MW, Moliterno DJ, Kirtane AJ, Stone GW, Colombo A, Chieffo A, Kini AS, Witzenbichler B, Weisz G, Steg PG, Pocock S (2016) Coronary thrombosis and major bleeding after PCI with drug-eluting stents: risk scores from PARIS. J Am Coll Cardiol 67(19):2224–2234

    Article  Google Scholar 

  24. 24.

    Natsuaki M, Morimoto T, Yamaji K, Watanabe H, Yoshikawa Y, Shiomi H, Nakagawa Y, Furukawa Y, Kadota K, Ando K, Akasaka T, Hanaoka KI, Kozuma K, Tanabe K, Morino Y, Muramatsu T, Kimura T (2018) Prediction of thrombotic and bleeding events after percutaneous coronary intervention: CREDO-Kyoto thrombotic and bleeding risk scores. J Am Heart Assoc 7(11):e008708

    Article  Google Scholar 

  25. 25.

    Takeji Y, Yamaji K, Tomoi Y, Okazaki J, Tanaka K, Nagae A, Jinnouchi H, Hiramori S, Soga Y, Ando K (2018) Impact of frailty on clinical outcomes in patients with critical limb ischemia. Circ Cardiovasc Interv 11(7):e006778

    Article  Google Scholar 

  26. 26.

    Senthong V, Wu Y, Hazen SL, Tang WH (2017) Predicting long-term prognosis in stable peripheral artery disease with baseline functional capacity estimated by the Duke Activity Status Index. Am Heart J 184:17–25

    Article  Google Scholar 

  27. 27.

    Gebauer K, Engelbertz C, Malyar NM, Meyborg M, Lüders F, Freisinger E, Reinecke H (2016) Long-term mortality after invasive angiography and endovascular revascularization in patients with PAD having chronic kidney disease. Angiology 67(6):556–564

    CAS  Article  Google Scholar 

  28. 28.

    Toor IS, Jaumdally RJ, Moss MS, Babu SB (2009) Preprocedural hemoglobin predicts outcome in peripheral vascular disease patients undergoing percutaneous transluminal angioplasty. J Vasc Surg 50(2):317–321

    Article  Google Scholar 

  29. 29.

    Mizobuchi K, Jujo K, Minami Y, Ishida I, Nakao M, Hagiwara N (2019) The baseline nutritional status predicts long-term mortality in patients undergoing endovascular therapy. Nutrients 11(8):1745

    CAS  Article  Google Scholar 

  30. 30.

    Généreux P, Giustino G, Witzenbichler B, Weisz G, Stuckey TD, Rinaldi MJ, Neumann FJ, Metzger DC, Henry TD, Cox DA, Duffy PL, Mazzaferri E, Yadav M, Francese DP, Palmerini T, Kirtane AJ, Litherland C, Mehran R, Stone GW (2015) Incidence, predictors, and impact of post-discharge bleeding after percutaneous coronary intervention. J Am Coll Cardiol 66(9):1036–1045

    Article  Google Scholar 

  31. 31.

    Ohya M, Shimada T, Osakada K, Kuwayama A, Miura K, Murai R, Amano H, Kubo S, Otsuru S, Habara S, Tada T, Tanaka H, Fuku Y, Katoh H, Goto T, Kadota K (2018) In-hospital bleeding and utility of a maintenance dose of prasugrel 2.5 mg in high bleeding risk patients with acute coronary syndrome. Circ J 82(7):1874–1883

    CAS  Article  Google Scholar 

  32. 32.

    Hess CN, Rao SV, McCoy LA, Neely ML, Singh M, Spertus JA, Krone RJ, Weaver WD, Peterson ED (2015) Identification of hospital outliers in bleeding complications after percutaneous coronary intervention. Circ Cardiovasc Qual Outcomes 8(1):15–22

    Article  Google Scholar 

  33. 33.

    Kang J, Park KW, Palmerini T, Stone GW, Lee MS, Colombo A, Chieffo A, Feres F, Abizaid A, Bhatt DL, Valgimigli M, Hong MK, Jang Y, Gilard M, Morice MC, Park DW, Park SJ, Jeong YH, Park J, Koo BK, Kim HS (2019) Racial differences in ischaemia/bleeding risk trade-off during anti-platelet therapy: individual patient level landmark meta-analysis from seven RCTs. Thromb Haemost 119(1):149–162

    Article  Google Scholar 

  34. 34.

    Levine GN, Jeong YH, Goto S, Anderson JL, Huo Y, Mega JL, Taubert K, Smith SC Jr (2014) World heart federation expert consensus statement on antiplatelet therapy in east asian patients with ACS or undergoing PCI. Glob Heart 9(4):457–467

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Itsuro Morishima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshioka, N., Takagi, K., Morita, Y. et al. Bleeding events and mid-term mortality in the patients undergoing endovascular interventions for peripheral artery disease of the lower limbs based on the academic research consortium high bleeding risk criteria. Heart Vessels (2021). https://doi.org/10.1007/s00380-021-01804-3

Download citation

Keywords

  • Peripheral artery disease
  • Endovascular therapy
  • High bleeding risk
  • Bleeding events
  • Mortality