Heart and Vessels

, Volume 34, Issue 7, pp 1113–1121 | Cite as

Plaque modification and stabilization after paclitaxel-coated balloon treatment for de novo coronary lesions

  • Ae-Young Her
  • Eun-Seok ShinEmail author
  • Ju-Hyun Chung
  • Yong Hoon Kim
  • Scot Garg
  • Joo Myung Lee
  • Joon-Hyung Doh
  • Chang-Wook Nam
  • Bon-Kwon Koo
Original Article


This study aimed to assess the healing response, as evidenced through temporal morphological and functional changes, following paclitaxel-coated balloon (PCB) treatment of de novo coronary lesions. This retrospective, observational study, included patients with significant de novo coronary lesions who were treated with PCB and had serial angiographic, intravascular ultrasound virtual histology (IVUS-VH), fractional flow reserve (FFR) measurements, and optical coherence tomography (OCT) performed before balloon angioplasty (BA), after BA, and at 9-month follow-up. A total of 20 patients (21 lesions) were included in this study. After PCB treatment, IVUS showed significant increases in the mean vessel area (12.0 ± 2.2 mm2 to 13.8 ± 2.5 mm2, p = 0.023), and mean lumen area (5.6 ± 1.2 mm2 to 7.0 ± 1.5 mm2, p = 0.003). Coronary flow was restored after BA with an FFR value of 0.87 ± 0.04 which was sustained at 9-month follow-up with no significant decrease (0.83 ± 0.08, p = 0.329). Serial OCT analysis showed that at 9-month follow-up dissections after BA sealed in 14 lesions (67%), whilst the macrophages decreased from 10 (50%) to 7 (35%) lesions, and the cap thickness of plaque increased from 0.12 ± 0.06 mm to 0.17 ± 0.09 mm (p = 0.007). PCB treatment for de novo coronary lesions showed persistent anatomical and functional patency at mid-term follow-up. Plaque modification, vascular remodeling, and plaque stabilization were also observed during follow-up.


Paclitaxel-coated balloon De novo coronary lesions Optical coherence tomography Vessel remodeling Fractional flow reserve 


Compliance with ethical standards

Conflict of interest

Authors have approved the final manuscript, which has not been published and is not under consideration for publication elsewhere. We declare that there is no conflict of interest for any author.


  1. 1.
    Latib A, Colombo A, Castriota F, Micari A, Cremonesi A, De Felice F, Marchese A, Tespili M, Presbitero P, Sgueglia GA, Buffoli F, Tamburino C, Varbella F, Menozzi A (2012) A randomized multicenter study comparing a paclitaxel drug-eluting balloon with a paclitaxel-eluting stent in small coronary vessels: the BELLO (Balloon Elution and Late Loss Optimization) study. J Am Coll Cardiol 60(24):2473–2480CrossRefGoogle Scholar
  2. 2.
    Wohrle J, Werner GS (2013) Paclitaxel-coated balloon with bare-metal stenting in patients with chronic total occlusions in native coronary arteries. Catheter Cardiovasc Interv 81(5):793–799CrossRefGoogle Scholar
  3. 3.
    Her AY, Ann SH, Singh GB, Kim YH, Yoo SY, Garg S, Koo BK, Shin ES (2016) Comparison of paclitaxel-coated balloon treatment and plain old balloon angioplasty for de novo coronary lesions. Yonsei Med J 57(2):337–341CrossRefGoogle Scholar
  4. 4.
    Shin ES, Ann SH, Balbir Singh G, Lim KH, Kleber FX, Koo BK (2016) Fractional flow reserve-guided paclitaxel-coated balloon treatment for de novo coronary lesions. Catheter Cardiovasc Interv 88(2):193–200CrossRefGoogle Scholar
  5. 5.
    Ann SH, Balbir Singh G, Lim KH, Koo BK, Shin ES (2016) Anatomical and physiological changes after paclitaxel-coated balloon for atherosclerotic de novo coronary lesions: serial IVUS-VH and FFR Study. PLoS ONE 11(1):e0147057CrossRefGoogle Scholar
  6. 6.
    Ann SH, Her AY, Singh GB, Okamura T, Koo BK, Shin ES (2016) Serial morphological and functional assessment of the paclitaxel-coated balloon for de novo lesions. Rev Esp Cardiol (Engl Ed) 69(11):1026–1032CrossRefGoogle Scholar
  7. 7.
    Shin ES, Lee JH, Yoo SY, Park Y, Hong YJ, Kim MH, Lee JY, Nam CW, Tahk SJ, Kim JS, Jeong YH, Lee CW, Shin HK, Kim JH (2014) A randomised, multicentre, double blind, placebo controlled trial to evaluate the efficacy and safety of cilostazol in patients with vasospastic angina. Heart 100(19):1531–1536CrossRefGoogle Scholar
  8. 8.
    Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG (2001) American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37(5):1478–1492CrossRefGoogle Scholar
  9. 9.
    Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106(17):2200–2206CrossRefGoogle Scholar
  10. 10.
    Rodriguez-Granillo GA, Garcia-Garcia HM, Mc Fadden EP, Valgimigli M, Aoki J, De Feyter P, Serruys PW (2005) In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol 46(11):2038–2042CrossRefGoogle Scholar
  11. 11.
    Kubo T, Maehara A, Mintz GS, Doi H, Tsujita K, Choi SY, Katoh O, Nasu K, Koenig A, Pieper M, Rogers JH, Wijins W, Bose D, Margolis MP, Moses JW, Stone GW, Leon MB (2010) The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol 55(15):1590–1597CrossRefGoogle Scholar
  12. 12.
    Tian J, Ren X, Vergallo R, Xing L, Yu H, Jia H, Soeda T, McNulty I, Hu S, Lee H, Yu B, Jang IK (2014) Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J Am Coll Cardiol 63(21):2209–2216CrossRefGoogle Scholar
  13. 13.
    Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE (2003) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107(1):113–119CrossRefGoogle Scholar
  14. 14.
    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Raber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol 59(12):1058–1072CrossRefGoogle Scholar
  15. 15.
    Cutlip DE, Windecker S, Mehran R, Boam A, Cogen DJ, van Es GA, Steg PG, Morel MA, Mauri L, Vranckx P, McFadden E, Lansky A, Hamon M, Krucoff MW, Serruys PW (2007) Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 115(17):2344–2351CrossRefGoogle Scholar
  16. 16.
    Talley JD, Hurst JW, King SB 3rd, Douglas JS Jr, Roubin GS, Gruentzig AR, Anderson HV, Weintraub WS (1988) Clinical outcome 5 years after attempted percutaneous transluminal coronary angioplasty in 427 patients. Circulation 77(4):820–829CrossRefGoogle Scholar
  17. 17.
    Mintz GS (2000) Remodeling and restenosis: observations from serial intravascular ultrasound studies. Curr Interv Cardiol Rep 2(4):316–325Google Scholar
  18. 18.
    Kleber FX, Rittger H, Bonaventura K, Zeymer U, Wohrler J, Jeger R, Levenson B, Mobius-Winkler S, Bruch L, Fischer D, Hengstenberg C, Porner T, Mathey D, Scheller B (2013) Drug-coated balloons for treatment of coronary artery disease: updated recommendations from a consensus group. Clin Res Cardiol 102(11):785–797CrossRefGoogle Scholar
  19. 19.
    Scheller B, Speck U, Abramjuk C, Bernhardt U, Bohm M, Nickenig G (2004) Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 110(7):810–814CrossRefGoogle Scholar
  20. 20.
    Gray WA, Granada JF (2010) Drug-coated balloons for the prevention of vascular restenosis. Circulation 121(24):2672–2680CrossRefGoogle Scholar
  21. 21.
    Axel DI, Kunert W, Goggelmann C, Oberhoff M, Herdeg C, Kuttner A, Wild DH, Brehm BR, Riessen R, Koveker G, Karsch KR (1997) Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 96(2):636–645CrossRefGoogle Scholar
  22. 22.
    Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Wong C, Hong MK, Kovach JA, Leon MB (1996) Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 94(1):35–43CrossRefGoogle Scholar
  23. 23.
    Scheller B, Fischer D, Clever YP, Koeber FX, Speck U, Bohm M, Cremers B (2013) Treatment of a coronary bifurcation lesion with drug-coated balloons: lumen enlargement and plaque modification after 6 months. Clin Res Cardiol 102(6):469–472CrossRefGoogle Scholar
  24. 24.
    Scheller B, Speck U, Schmitt A, Bohm M, Nickenig G (2003) Addition of paclitaxel to contrast media prevents restenosis after coronary stent implantation. J Am Coll Cardiol 42(8):1415–1420CrossRefGoogle Scholar
  25. 25.
    Vogt F, Stein A, Rettemeier G, Krott N, Hoffmann R, vom Dahl J, Bosserhoff AK, Michaeli W, Hanrath P, Weber C, Blindt R (2004) Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. Eur Heart J 25(15):1330–1340CrossRefGoogle Scholar
  26. 26.
    Weissman NJ, Koglin J, Cox DA, Hermiller J, O'Shaughnessy C, Mann JT, Turco M, Caputo R, Bergin P, Greenberg J, Kutcher M, Wong SC, Strickland W, Mooney M, Russel ME, Ellis SH, Stone GW (2005) Polymer-based paclitaxel-eluting stents reduce in-stent neointimal tissue proliferation: a serial volumetric intravascular ultrasound analysis from the TAXUS-IV trial. J Am Coll Cardiol 45(8):1201–1205CrossRefGoogle Scholar
  27. 27.
    Serruys PW, Degertekin M, Tanabe K, Russel ME, Guagliumi G, Webb J, Hamburger J, Rutsch W, Kaiser C, Whitbourn R, Camenzind E, Meredith I, Reeves F, Nienaber C, Benit E, Disco C, Koglin J, Colombo A (2004) Vascular responses at proximal and distal edges of paclitaxel-eluting stents: serial intravascular ultrasound analysis from the TAXUS II trial. Circulation 109(5):627–633CrossRefGoogle Scholar
  28. 28.
    Morton AC, Arnold ND, Crossman DC, Gunn J (2004) Response of very small (2 mm) porcine coronary arteries to balloon angioplasty and stent implantation. Heart 90(3):324–327CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Cardiology, Department of Internal MedicineKangwon National University School of MedicineChuncheonSouth Korea
  2. 2.Division of Cardiology, Ulsan Medical CenterUlsan HospitalUlsanSouth Korea
  3. 3.East Lancashire Hospitals NHS TrustBlackburnUK
  4. 4.Department of Internal Medicine and Cardiovascular Center, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
  5. 5.Department of CardiologyInje University Ilsan Paik HospitalGoyangSouth Korea
  6. 6.Department of Internal MedicineKeimyung University Dongsan Medical CenterDaeguSouth Korea
  7. 7.Department of Internal Medicine and Cardiovascular CenterSeoul National University HospitalSeoulSouth Korea

Personalised recommendations