Skip to main content

Advertisement

Log in

Sustained delivery of vascular endothelial growth factor using a dextran/poly(lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

We hypothesize that the controlled delivery of vascular endothelial growth factor (VEGF) using a novel protein sustained-release system based on the combination of protein-loaded dextran microparticles and PLGA microspheres could be useful to achieve mature vessel formation in a rat hind-limb ischemic model. VEGF-loaded dextran microparticles were fabricated and then encapsulated into poly(lactic-co-glycolic acid) (PLGA) microspheres to prepare VEGF–dextran–PLGA microspheres. The release behavior and bioactivity in promoting endothelial cell proliferation of VEGF from PLGA microspheres were monitored in vitro. VEGF–dextran–PLGA microsphere-loaded fibrin gel was injected into an ischemic rat model, and neovascularization at the ischemic site was evaluated. The release of VEGF from PLGA microspheres was in a sustained manner for more than 1 month in vitro with low level of initial burst release. The released VEGF enhanced the proliferation of endothelial cells in vitro, and significantly promoted the capillaries and smooth muscle α-actin positive vessels formation in vivo. The retained bioactivity of VEGF released from VEGF–dextran–PLGA microspheres potentiated the angiogenic efficacy of VEGF. This sustained-release system may be a promising vehicle for delivery of multiple angiogenic factors for therapeutic neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Layman H, Sacasa M, Murphy AE, Murphy AM, Pham SM, Andreopoulos FM (2009) Co-delivery of FGF-2 and G-CSF from gelatin-based hydrogels as angiogenic therapy in a murine critical limb ischemic model. Acta Biomater 5:230–239

    Article  CAS  PubMed  Google Scholar 

  2. Li L, Okada H, Takemura G, Esaki M, Kobayashi H, Kanamori H, Kawamura I, Maruyama R, Fujiwara T, Fujiwara H, Tabata Y, Minatoguchi S (2009) Sustained release of erythropoietin using biodegradable gelatin hydrogel microspheres persistently improves lower leg ischemia. J Am Coll Cardiol 53:2378–2388

    Article  CAS  PubMed  Google Scholar 

  3. Bao H, Lv F, Liu T (2017) A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model. Acta Biomater 64:279–289

    Article  CAS  PubMed  Google Scholar 

  4. Ylä-Herttuala S (2013) Cardiovascular gene therapy with vascular endothelial growth factors. Gene 525:217–219

    Article  CAS  PubMed  Google Scholar 

  5. Helisch A, Schaper W (2003) Arteriogenesis: the development and growth of collateral arteries. Microcirculation 10:83–97

    Article  PubMed  Google Scholar 

  6. Heil M, Eitenmüller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10:45–55

    Article  CAS  Google Scholar 

  7. Troidl K, Schaper W (2012) Arteriogenesis versus angiogenesis in peripheral artery disease. Diabetes Metab Res Rev 28(Suppl 1):27–29

    Article  PubMed  Google Scholar 

  8. Simons M (2005) Angiogenesis: where do we stand now. Circulation 111:1556–1566

    Article  PubMed  Google Scholar 

  9. Nair KL, Jagadeeshan S, Nair SA, Kumar GS (2011) Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomedicine 6:1685–1697

    CAS  PubMed  PubMed Central  Google Scholar 

  10. El-Hammadi MM, Delgado ÁV, Melguizo C, Prados JC, Arias JL (2017) Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int J Pharm 516:61–70

    Article  CAS  PubMed  Google Scholar 

  11. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18

    Article  CAS  PubMed  Google Scholar 

  12. Raza K, Kumar N, Misra C, Kaushik L, Guru SK, Kumar P, Malik R, Bhushan S, Katare OP (2016) Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile. Int J Biol Macromol 88:206–212

    Article  CAS  PubMed  Google Scholar 

  13. Suarez SL, Muñoz A, Mitchell A, Braden RL, Luo C, Cochran JR, Almutairi A, Christman KL (2016) Degradable acetalated dextran microparticles for tunable release of an engineered hepatocyte growth factor fragment. ACS Biomater Sci Eng 2:197–204

    Article  CAS  PubMed  Google Scholar 

  14. Ribeiro MP, Morgado PI, Miguel SP, Coutinho P, Correia IJ (2013) Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C Mater Biol Appl 33:2958–2966

    Article  CAS  PubMed  Google Scholar 

  15. Schwendeman SP (2002) Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit Rev Ther Drug Carrier Syst 19:73–98

    Article  CAS  PubMed  Google Scholar 

  16. Zhu G, Mallery SR, Schwendeman SP (2000) Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol 18:52–57

    Article  CAS  PubMed  Google Scholar 

  17. Schellekens H (2005) Immunologic mechanisms of EPO-associated pure red cell aplasia. Best Pract Res Clin Haematol 18:473–480

    Article  CAS  Google Scholar 

  18. Maas C, Hermeling S, Bouma B, Jiskoot W, Gebbink MF (2007) A role for protein misfolding in immunogenicity of biopharmaceuticals. J Biol Chem 282:2229–2236

    Article  CAS  PubMed  Google Scholar 

  19. Jiang W, Schwendeman SP (2001) Stabilization and controlled release of bovine serum albumin encapsulated in poly(d, l-lactide) and poly(ethylene glycol) microsphere blends. Pharm Res 18:878–885

    Article  CAS  PubMed  Google Scholar 

  20. Kang J, Wu F, Cai Y, Xu M, He M, Yuan W (2014) Development of recombinant human growth hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method. Eur J Pharm Sci 62:141–147

    Article  CAS  PubMed  Google Scholar 

  21. Wu F, Dai L, Geng L, Zhu H, Jin T (2017) Practically feasible production of sustained-release microspheres of granulocyte-macrophage colony-stimulating factor (rhGM–CSF). J Control Release 259:195–202

    Article  CAS  PubMed  Google Scholar 

  22. Geng Y, Yuan W, Wu F, Chen J, He M, Jin T (2008) Formulating erythropoietin-loaded sustained-release PLGA microspheres without protein aggregation. J Control Release 130:259–265

    Article  CAS  PubMed  Google Scholar 

  23. Yuan W, Wu F, Guo M, Jin T (2009) Development of protein delivery microsphere system by a novel S/O/O/W multi-emulsion. Eur J Pharm Sci 36:212–218

    Article  CAS  PubMed  Google Scholar 

  24. Yang S, Yuan W, Jin T (2009) Formulating protein therapeutics into particulate forms. Expert Opin Drug Deliv 6:1123–1133

    Article  CAS  PubMed  Google Scholar 

  25. Kwak HH, Shim WS, Choi MK, Son MK, Kim YJ, Yang HC, Kim TH, Lee GI, Kim BM, Kang SH, Shim CK (2009) Development of a sustained-release recombinant human growth hormone formulation. J Control Release 137:160–165

    Article  CAS  PubMed  Google Scholar 

  26. Kim SJ, Hahn SK, Kim MJ, Kim DH, Lee YP (2005) Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Control Release 104:323–335

    Article  CAS  PubMed  Google Scholar 

  27. Jordan F, Naylor A, Kelly CA, Howdle SM, Lewis A, Illum L (2010) Sustained release hGH microsphere formulation produced by a novel supercritical fluid technology: in vivo studies. J Control Release 141:153–160

    Article  CAS  PubMed  Google Scholar 

  28. Kakizawa Y, Nishio R, Hirano T, Koshi Y, Nukiwa M, Koiwa M, Michizoe J, Ida N (2010) Controlled release of protein drugs from newly developed amphiphilic polymer-based microparticles composed of nanoparticles. J Control Release 142:8–13

    Article  CAS  PubMed  Google Scholar 

  29. Giacca M, Zacchigna S (2012) VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther 19:622–629

    Article  CAS  PubMed  Google Scholar 

  30. Ouma GO, Zafrir B, Mohler ER, Flugelman MY (2013) Therapeutic angiogenesis in critical limb ischemia. Angiology 64:466–480

    Article  PubMed  Google Scholar 

  31. Marsano A, Maidhof R, Luo J, Fujikara K, Konofagou EE, Banfi A, Vunjak-Novakovic G (2013) The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials 34:393–401

    Article  CAS  PubMed  Google Scholar 

  32. Jin T, Zhu J, Wu F, Yuan W, Geng LL, Zhu H (2008) Preparing polymer-based sustained-release systems without exposing proteins to water–oil or water–air interfaces and cross-linking reagents. J Control Release 128:50–59

    Article  CAS  PubMed  Google Scholar 

  33. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  CAS  PubMed  Google Scholar 

  34. Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, Goelman G, Keshet E (2002) Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 21:1939–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113:516–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Springer ML, Ozawa CR, Banfi A, Kraft PE, Ip TK, Brazelton TR, Blau HM (2003) Localized arteriole formation directly adjacent to the site of VEGF-induced angiogenesis in muscle. Mol Ther 7:441–449

    Article  CAS  PubMed  Google Scholar 

  37. Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, Pieczek A, Iwaguro H, Hayashi SI, Isner JM, Asahara T (2000) Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86:1198–1202

    Article  CAS  PubMed  Google Scholar 

  38. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Yung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189

    Article  CAS  PubMed  Google Scholar 

  40. Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497

    Article  CAS  PubMed  Google Scholar 

  41. Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, Moore MA, Rafii S (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193:1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T (2002) Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105:732–738

    Article  CAS  PubMed  Google Scholar 

  43. Avraham-Davidi I, Yona S, Grunewald M, Landsman L, Cochain C, Silvestre JS, Mizrahi H, Faroja M, Strauss-Ayali D, Mack M, Jung S, Keshet E (2013) On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. J Exp Med 210:2611–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (grant number 81460083), Natural Science Foundation of Jiangxi Province (grant number 20141BBG70032, 20152ACB21026 and 20142BAB215034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z.D., Xu, Y.Q., Chen, F. et al. Sustained delivery of vascular endothelial growth factor using a dextran/poly(lactic-co-glycolic acid)-combined microsphere system for therapeutic neovascularization. Heart Vessels 34, 167–176 (2019). https://doi.org/10.1007/s00380-018-1230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-018-1230-5

Keywords

Navigation