Advertisement

Optical coherence tomography in STEMI with bioresorbable scaffold: possible cause of coronary flow impairment? A sub-study from the Prague 19 trial

  • Marco Loffi
  • Petr Tousek
  • Tomas Budesinsky
  • Libor Lisa
  • Andrea Santangelo
  • Petr Widimsky
  • Viktor Kocka
Original Article
  • 56 Downloads

Abstract

This study assessed the Optical Coherence Tomography (OCT) impact on the coronary flow in ST-elevation myocardial infarction (STEMI) after bioresorbable scaffold implantation. Only few data about OCT use in STEMI are available and coronary flow before and after OCT is not well studied yet. 54 patients with OCT performed at the end of procedure from the Prague 19 trial were selected and coronary flow was evaluated as TIMI frame count (TFC) before and just after OCT. Significant increase in TIMI frame count after OCT [from 9.5 (6.75–12.25) to 11.5 (8–15.25) frames; p = 0.001] and high verapamil administration (18%) was reported. OCT at the end of primary percutaneous coronary intervention with bioresorbable scaffold is a feasible procedure. However, it seems to be associated with flow deterioration.

Keywords

STEMI Bioabsorbable scaffold Optical coherence tomography Coronary blood flow 

Notes

Acknowledgements

We thank Ema Buksova for her help in collecting data for this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography HHS public access. Science 254(5035):1178–1181CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, Akasaka T, Costa M, Guagliumi G, Grube E, Ozaki Y, Pinto F, Serruys PWJ (2010) Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 31(4):401–415CrossRefPubMedGoogle Scholar
  3. 3.
    Barlis P, Gonzalo N, Di Mario C, Prati F, Buellesfeld L, Rieber J, Dalby MC, Ferrante G, Cera M, Grube E, Serruys PW, Regar E (2009) A multicentre evaluation of the safety of intracoronary optical coherence tomography. EuroIntervention 5(1):90–95CrossRefPubMedGoogle Scholar
  4. 4.
    Yamaguchi T, Terashima M, Akasaka T, Hayashi T, Mizuno K, Muramatsu T, Nakamura M, Nakamura S, Saito S, Takano M, Takayama T, Yoshikawa J, Suzuki T (2008) Safety and feasibility of an intravascular optical coherence tomography image wire system in the clinical setting. Am J Cardiol 101(5):562–567CrossRefPubMedGoogle Scholar
  5. 5.
    Ali ZA, Maehara A, Genereux P, Shlofmitz RA, Fabbiocchi F, Nazif TM, Guagliumi G, Meraj PM, Alfonso F, Samady H, Akasaka T, Carlson EB, Leesar MA, Matsumura M, Ozan MO, Mintz GS, Ben-Yehuda O, Stone GW (2016) Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet 388(10060):2618–2628CrossRefPubMedGoogle Scholar
  6. 6.
    Meneveau N, Souteyrand G, Motreff P, Caussin C, Amabile N, Ohlmann P, Morel O, Lefrançois Y, Descotes-Genon V, Silvain J, Braik N, Chopard R, Chatot M, Ecarnot F, Tauzin H, Van Belle E, Belle L, Schiele F (2016) Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome: results of the multicenter, randomized DOCTORS study (Does Optical Coherence Tomography Optimize Results of Stenting). Circulation 134:906–917CrossRefPubMedGoogle Scholar
  7. 7.
    Kajander OA, Koistinen LS, Eskola M, Huhtala H, Bhindi R, Niemela K, Jolly SS, Sheth T, For the TOTAL-OCT Substudy Investigators (2015) Feasibility and repeatability of optical coherence tomography measurements of pre-stent thrombus burden in patients with STEMI treated with primary PCI. Eur Heart J Cardiovasc Imaging 16(1):96–107CrossRefPubMedGoogle Scholar
  8. 8.
    Kocka V, Maly M, Tousek P, Budesinsky T, Lisa L, Prodanov P, Jarkovsky J, Widimsky P (2014) Bioresorbable vascular scaffolds in acute ST-segment elevation myocardial infarction: a prospective multicentre study “Prague 19”. Eur Heart J 35(12):787–794CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ormiston JA, Serruys PW, Regar E, Dudek D, Thuesen L, Webster MW, Onuma Y, Garcia-Garcia HM, McGreevy R, Veldhof S (2008) A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371(9616):899–907CrossRefPubMedGoogle Scholar
  10. 10.
    Gibson CM, Cannon CP, Daley WL, Dodge JT, Alexander B, Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK, Braunwald E (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93(5):879–888CrossRefPubMedGoogle Scholar
  11. 11.
    Imola F, Mallus M, Ramazzotti V, Manzoli A, Pappalardo A, Di Giorgio A, Albertucci M, Prati F (2010) Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention 6(5):575–581CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cardiology Clinic, Dipartimento di Scienze Cliniche e di Comunità, UO Malattie Cardiovascolari, Fondazione IRCCS, Ospedale Maggiore PoliclinicoUniversity of MilanMilanItaly
  2. 2.Cardiocenter, Third Faculty of Medicine, University Hospital Kralovske VinohradyCharles UniversityPragueCzech Republic
  3. 3.Department of CardiologyUniversity of PalermoPalermoItaly

Personalised recommendations