Skip to main content
Log in

Liraglutide suppresses atrial electrophysiological changes

  • Short Communication
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

We have shown that a dipeptidyl peptidase 4 (DPP-4) inhibitor suppresses atrial remodeling in a canine atrial fibrillation (AF) model. Glucagon-like peptide-1 (GLP-1) is increased by DPP-4 inhibitors. However, it is not clear whether GLP-1 is involved in the suppression of atrial remodeling. In this study, we evaluated the effect of liraglutide (a GLP-1 analog) on atrial electrophysiological changes using the same canine AF model. We established a canine AF model using continuous 3-week rapid atrial stimulation in seven beagle dogs divided into two groups: a liraglutide group with four dogs (3-week atrial pacing with liraglutide (150 µg/kg/day) administration) and a pacing control group with three dogs (3-week pacing without any medicine). We evaluated the atrial effective refractory period (AERP), conduction velocity (CV), and AF inducibility every week during the protocol using implanted epicardial wires against the surfaces of both atria. In the pacing control group, the AERP was gradually shortened and the CV was decreased along the time course. In the liraglutide group, the AERP was similarly shortened as in the pacing control group (94 ± 4% versus 85 ± 2%, respectively; p = 0.5926), but the CV became significantly higher than that in the pacing control group after 2 and 3 weeks (95 ± 4 versus 83 ± 5%, respectively; p = 0.0339). The AF inducibility was gradually increased in the pacing control group, but it was suppressed in the liraglutide group (5 ± 9% versus 73 ± 5%; p = 0.0262). Liraglutide suppressed electrophysiological changes such as AF inducibility and CV decrease in our canine AF model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Dzeshka MS, Lip GY, Snezhitskiy V, Shantsila E (2015) Cardiac fibrosis in patients with atrial fibrillation: mechanisms and clinical implications. J Am Coll Cardiol 66(8):943–959

    Article  PubMed  Google Scholar 

  2. Igarashi T, Niwano S, Niwano H, Yoshizawa T, Nakamura H, Fukaya H, Fujiishi T, Ishizue N, Satoh A, Kishihara J, Murakami M, Ako J (2018) Linagliptin prevents atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessels 33(10):1258–1265

    Article  PubMed  Google Scholar 

  3. Lebovitz HE, Banerji MA (2012) Non-insulin injectable treatments (glucagon-like peptide-1 and its analogs) and cardiovascular disease. Diabetes Technol Ther 14:S43–S50

    Article  CAS  PubMed  Google Scholar 

  4. Liu Q, Anderson C, Broyde A, Polizzi C, Fernandez R, Baron A, Parkes DG (2010) Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol 9:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sonne DP, Engstrøm T, Treiman M (2008) Protective effects of GLP-1 analogues exendin-4 and GLP-1(9–36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 146:243–249

    Article  CAS  PubMed  Google Scholar 

  6. Satoh A, Niwano S, Niwano H, Kishihara J, Aoyama Y, Oikawa J, Fukaya H, Tamaki H, Ako J (2017) Aliskiren suppresses atrial electrical and structural remodeling in a canine model of atrial fibrillation. Heart Vessels 32(1):90–100

    Article  PubMed  Google Scholar 

  7. Kishihara J, Niwano S, Niwano H, Aoyama Y, Satoh A, Oikawa J, Kiryu M, Fukaya H, Masaki Y, Tamaki H, Izumi T, Ako J (2014) Effect of carvedilol on atrial remodeling in canine model of atrial fibrillation. Cardiovasc Diagn Ther 4(1):28–35

    PubMed  PubMed Central  Google Scholar 

  8. Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87(2):425–456

    Article  CAS  PubMed  Google Scholar 

  9. Bosch RF, Scherer CR, Rüb N, Wöhrl S, Steinmeyer K, Haase H, Busch AE, Seipel L, Kühlkamp V (2003) Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces I(Ca, L) and I(to) in rapid atrial pacing in rabbits. J Am Coll Cardiol 41(5):858–869

    Article  CAS  PubMed  Google Scholar 

  10. Gaspo R, Bosch RF, Bou-Abboud E, Nattel S (1997) Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res 81(6):1045–1052

    Article  CAS  PubMed  Google Scholar 

  11. Yue L, Melnyk P, Gaspo R, Wang Z, Nattel S (1999) Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 84(7):776–784

    Article  CAS  PubMed  Google Scholar 

  12. Olson TM, Michels VV, Ballew JD, Reyna SP, Karst ML, Herron KJ, Horton SC, Rodeheffer RJ, Anderson JL (2005) Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA 293(4):447–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nattel S, Harada M (2014) Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol 63(22):2335–2345

    Article  Google Scholar 

  14. Huang JH, Chen YC, Lee TI, Kao YH, Chazo TF, Chen SA, Chen Y (2016) Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes. Peptides 78:91–98

    Article  CAS  PubMed  Google Scholar 

  15. Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker DJ, Seino Y, Yamada Y (2014) The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int 85(3):579–589

    Article  CAS  PubMed  Google Scholar 

  16. Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, Steendijk P, Verlaan CW, Kerver M, Piek JJ, Doevendans PA, Pasterkamp G, Hoefer IE (2009) Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53(6):501–510

    Article  CAS  PubMed  Google Scholar 

  17. Tashiro Y, Sato K, Watanabe T, Nohtomi K, Terasaki M, Nagashima M, Hirano T (2014) A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides 54:19–26

    Article  CAS  PubMed  Google Scholar 

  18. Warbrick I, Rabkin SW (2018) Effect of the peptides relaxin, neuregulin, ghrelin and glucagon-like peptide-1, on cardiomyocyte factors involved in the molecular mechanisms leading to diastolic dysfunction and/or heart failure with preserved ejection fraction. Peptides. https://doi.org/10.1016/j.peptides.2018.05.009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Niwano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, H., Niwano, S., Niwano, H. et al. Liraglutide suppresses atrial electrophysiological changes. Heart Vessels 34, 1389–1393 (2019). https://doi.org/10.1007/s00380-018-01327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-018-01327-4

Keywords

Navigation