Skip to main content

Advertisement

Log in

High serum levels of thrombospondin-2 correlate with poor prognosis of patients with heart failure with preserved ejection fraction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Thrombospondin-2 (TSP-2) is highly expressed in hypertensive heart. Interstitial fibrosis is frequently observed in hypertensive heart, and it is a characteristic feature of heart failure with preserved ejection fraction (HFpEF). We tested here the hypothesis that high TSP-2 serum levels reflect disease severity and can predict poor prognosis of patients with HFpEF. Serum TSP-2 levels were measured by ELISA in 150 patients with HFpEF. HFpEF was defined as left ventricular ejection fraction ≥50 %, B-type natriuretic peptide (BNP) ≥100 pg/ml or E/e′ ≥15. The endpoints were mortality rate, HF-related hospitalization, stroke and non-fatal myocardial infarction. The median serum TSP-2 level was 19.2 (14.4–26.0) ng/ml. Serum TSP-2 levels were associated with the New York Heart Association (NYHA) functional class. Circulating levels of BNP and high-sensitivity troponin T were positively correlated with serum TSP-2 levels. Kaplan–Meier survival curve showed high risk of adverse cardiovascular events in the high TSP-2 group (>median value), and that the combination of high TSP-2 and high BNP (≥100 pg/ml) was associated with the worst event-free survival rate. Multivariate Cox proportional hazard analysis identified TSP-2 as independent predictor of risk of death and cardiovascular events. Circulating TSP-2 correlates with disease severity in patients with HFpEF. TSP-2 is a potentially useful predictor of future adverse cardiovascular events in patients with HFpEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Setoguchi M, Hashimoto Y, Sasaoka T, Ashikaga T, Isobe M (2014) Risk factors for rehospitalization in heart failure with preserved ejection fraction compared with reduced ejection fraction. Heart Vessel. doi:10.1007/s00380-014-0532-5

    Google Scholar 

  2. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    Article  PubMed  CAS  Google Scholar 

  3. Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, Roger VL (2006) Systolic and diastolic heart failure in the community. JAMA 296:2209–2216

    Article  PubMed  CAS  Google Scholar 

  4. Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, Tu JV, Levy D (2009) Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute. Circulation 119:3070–3077

    Article  PubMed  PubMed Central  Google Scholar 

  5. Adams JC, Lawler J (2011) The thrombospondins. Cold Spring Harb Perspect Biol 3:a009712

    Article  PubMed  PubMed Central  Google Scholar 

  6. Calabro NE, Kristofik NJ, Kyriakides TR (2014) Thrombospondin-2 and extracellular matrix assembly. Biochim Biophys Acta 1840:2396–2402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Mustonen E, Ruskoaho H, Rysa J (2013) Thrombospondins, potential drug targets for cardiovascular diseases. Basic Clin Pharmacol Toxicol 112:4–12

    Article  PubMed  CAS  Google Scholar 

  8. Hanatani S, Izumiya Y, Takashio S, Kimura Y, Araki S, Rokutanda T, Tsujita K, Yamamoto E, Tanaka T, Yamamuro M, Kojima S, Tayama S, Kaikita K, Hokimoto S, Ogawa H (2014) Circulating thrombospondin-2 reflects disease severity and predicts outcome of heart failure with reduced ejection fraction. Circ J 78:903–910

    Article  PubMed  CAS  Google Scholar 

  9. Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271

    Article  PubMed  Google Scholar 

  10. Schroen B, Heymans S, Sharma U, Blankesteijn WM, Pokharel S, Cleutjens JP, Porter JG, Evelo CT, Duisters R, van Leeuwen RE, Janssen BJ, Debets JJ, Smits JF, Daemen MJ, Crijns HJ, Bornstein P, Pinto YM (2004) Thrombospondin-2 is essential for myocardial matrix integrity: increased expression identifies failure-prone cardiac hypertrophy. Circ Res 95:515–522

    Article  PubMed  CAS  Google Scholar 

  11. Hanatani S, Izumiya Y, Takashio S, Kojima S, Yamamuro M, Araki S, Rokutanda T, Tsujita K, Yamamoto E, Tanaka T, Tayama S, Kaikita K, Hokimoto S, Sugiyama S, Ogawa H (2014) Growth differentiation factor 15 can distinguish between hypertrophic cardiomyopathy and hypertensive hearts. Heart Vessel 29:231–237

    Article  Google Scholar 

  12. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  PubMed  CAS  Google Scholar 

  13. Katz MH (2005) Multivariable analysis: a practical guide for clinicians, 2nd edn. Cambridge University Press, New York, pp 51–77

    Google Scholar 

  14. Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865

    Article  PubMed  CAS  Google Scholar 

  15. Cleland JG, Taylor J, Freemantle N, Goode KM, Rigby AS, Tendera M (2012) Relationship between plasma concentrations of N-terminal pro brain natriuretic peptide and the characteristics and outcome of patients with a clinical diagnosis of diastolic heart failure: a report from the PEP-CHF study. Eur J Heart Fail 14:487–494

    Article  PubMed  CAS  Google Scholar 

  16. van Veldhuisen DJ, Linssen GC, Jaarsma T, van Gilst WH, Hoes AW, Tijssen JG, Paulus WJ, Voors AA, Hillege HL (2013) B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol 61:1498–1506

    Article  PubMed  Google Scholar 

  17. Naito Y, Tsujino T, Lee-Kawabata M, Matsumoto M, Ezumi A, Nakao S, Goda A, Ohyanagi M, Masuyama T (2009) Matrix metalloproteinase-1 and -2 levels are differently regulated in acute exacerbation of heart failure in patients with and without left ventricular systolic dysfunction. Heart Vessel 24:181–186

    Article  Google Scholar 

  18. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, van Veldhuisen DJ (2011) Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 43:60–68

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kitahara T, Takeishi Y, Arimoto T, Niizeki T, Koyama Y, Sasaki T, Suzuki S, Nozaki N, Hirono O, Nitobe J, Watanabe T, Kubota I (2007) Serum carboxy-terminal telopeptide of type I collagen (ICTP) predicts cardiac events in chronic heart failure patients with preserved left ventricular systolic function. Circ J 71:929–935

    Article  PubMed  CAS  Google Scholar 

  20. Krum H, Elsik M, Schneider HG, Ptaszynska A, Black M, Carson PE, Komajda M, Massie BM, McKelvie RS, McMurray JJ, Zile MR, Anand IS (2011) Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen substudy. Circ Heart Fail 4:561–568

    Article  PubMed  CAS  Google Scholar 

  21. de Denus S, Lavoie J, Ducharme A, O’Meara E, Racine N, Sirois MG, Neagoe PE, Zhu L, Rouleau JL, White M (2012) Differences in biomarkers in patients with heart failure with a reduced vs a preserved left ventricular ejection fraction. Can J Cardiol 28:62–68

    Article  PubMed  Google Scholar 

  22. Shiba N, Shimokawa H (2008) Chronic heart failure in Japan: implications of the CHART studies. Vasc Health Risk Manag 4:103–113

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hamaguchi S, Tsuchihashi-Makaya M, Kinugawa S, Yokota T, Ide T, Takeshita A, Tsutsui H (2009) Chronic kidney disease as an independent risk for long-term adverse outcomes in patients hospitalized with heart failure in Japan. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J 73:1442–1447

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Saeko Tokunaga, Megumi Nagahiro and Ayuko Tateishi for the excellent technical assistance. This work was supported in part by The Japan Health Foundation, and Mitsui Life Social Welfare Foundation to Y.I., and a Grant-in-Aid for Scientific Research (B-25293186) to H.O. from the Ministry of Education, Science, and Culture, Japan.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Izumiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, Y., Izumiya, Y., Hanatani, S. et al. High serum levels of thrombospondin-2 correlate with poor prognosis of patients with heart failure with preserved ejection fraction. Heart Vessels 31, 52–59 (2016). https://doi.org/10.1007/s00380-014-0571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0571-y

Keywords

Navigation