Skip to main content
Log in

A novel technique to predict pulmonary capillary wedge pressure utilizing central venous pressure and tissue Doppler tricuspid/mitral annular velocities

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Assessing left ventricular (LV) filling pressure (pulmonary capillary wedge pressure, PCWP) is an important aspect in the care of patients with heart failure (HF). Physicians rely on right ventricular (RV) filling pressures such as central venous pressure (CVP) to predict PCWP, assuming concordance between CVP and PCWP. However, the use of this method is limited because discordance between CVP and PCWP is observed. We hypothesized that PCWP can be reliably predicted by CVP corrected by the relationship between RV and LV function, provided by the ratio of tissue Doppler peak systolic velocity of tricuspid annulus (S T) to that of mitral annulus (S M) (corrected CVP:CVP·S T/S M). In 16 anesthetized closed-chest dogs, S T and S M were measured by transthoracic tissue Doppler echocardiography. PCWP was varied over a wide range (1.8–40.0 mmHg) under normal condition and various types of acute and chronic HF. A significantly stronger linear correlation was observed between CVP·S T/S M and PCWP (R 2 = 0.78) than between CVP and PCWP (R 2 = 0.22) (P < 0.01). Receiver-operating characteristic (ROC) analysis indicated that CVP·S T/S M >10.5 mmHg predicted PCWP >18 mmHg with 85 % sensitivity and 88 % specificity. Area under ROC curve for CVP·S T/S M to predict PCWP >18 mmHg was 0.93, which was significantly larger than that for CVP (0.66) (P < 0.01). Peripheral venous pressure (PVP) corrected by S T/S M (PVP·S T/S M) also predicted PCWP reasonably well, suggesting that PVP·S T/S M may be a minimally invasive alternative to CVP·S T/S M. In conclusion, our technique is potentially useful for the reliable prediction of PCWP in HF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Solomonica A, Burger AJ, Aronson D (2013) Hemodynamic determinants of dyspnea improvement in acute decompensated heart failure. Circ Heart Fail 6:53–60

    Article  PubMed  Google Scholar 

  2. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224

    Article  Google Scholar 

  3. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533

    Article  CAS  PubMed  Google Scholar 

  4. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    Article  CAS  PubMed  Google Scholar 

  5. Masutani S, Saiki H, Kurishima C, Kuwata S, Tamura M, Senzaki H (2013) Assessment of ventricular relaxation and stiffness using early diastolic mitral annular and inflow velocities in pediatric patients with heart disease. Heart Vessels. doi:10.1007/s00380-013-0422-2

    PubMed  Google Scholar 

  6. Mullens W, Borowski AG, Curtin RJ, Thomas JD, Tang WH (2009) Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation 119:62–70

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bhella PS, Pacini EL, Prasad A, Hastings JL, Adams-Huet B, Thomas JD, Grayburn PA, Levine BD (2011) Echocardiographic indices do not reliably track changes in left-sided filling pressure in healthy subjects or patients with heart failure with preserved ejection fraction. Circ Cardiovasc Imaging 4:482–489

    Article  PubMed Central  PubMed  Google Scholar 

  8. Butman SM, Ewy GA, Standen JR, Kern KB, Hahn E (1993) Bedside cardiovascular examination in patients with severe chronic heart failure: importance of rest or inducible jugular venous distension. J Am Coll Cardiol 22:968–974

    Article  CAS  PubMed  Google Scholar 

  9. Drazner MH, Prasad A, Ayers C, Markham DW, Hastings J, Bhella PS, Shibata S, Levine BD (2010) The relationship of right- and left-sided filling pressures in patients with heart failure and a preserved ejection fraction. Circ Heart Fail 3:202–206

    Article  PubMed Central  PubMed  Google Scholar 

  10. Forrester JS, Diamond G, McHugh TJ, Swan HJ (1971) Filling pressures in the right and left sides of the heart in acute myocardial infarction. A reappraisal of central-venous-pressure monitoring. N Engl J Med 285:190–193

    Article  CAS  PubMed  Google Scholar 

  11. Campbell P, Drazner MH, Kato M, Lakdawala N, Palardy M, Nohria A, Stevenson LW (2011) Mismatch of right- and left-sided filling pressures in chronic heart failure. J Card Fail 17:561–568

    Article  PubMed  Google Scholar 

  12. Terrovitis JV, Kapelios CJ, Sainis G, Ntalianis A, Kaldara E, Sousonis V, Vakrou S, Michelinakis N, Anagnostou D, Margari Z, Nanas JN (2013) Elevated left ventricular filling pressures can be estimated with accuracy by a new mathematical model. J Heart Lung Transpl 32:511–517

    Article  Google Scholar 

  13. Berglund E (1954) Ventricular function. VI. Balance of left and right ventricular output: relation between left and right atrial pressures. Am J Physiol 178:381–386

    CAS  PubMed  Google Scholar 

  14. Uemura K, Sugimachi M, Kawada T, Kamiya A, Jin Y, Kashihara K, Sunagawa K (2004) A novel framework of circulatory equilibrium. Am J Physiol Heart Circ Physiol 286:H2376–H2385

    Article  CAS  PubMed  Google Scholar 

  15. Wahl A, Praz F, Schwerzmann M, Bonel H, Koestner SC, Hullin R, Schmid JP, Stuber T, Delacrétaz E, Hess OM, Meier B, Seiler C (2011) Assessment of right ventricular systolic function: comparison between cardiac magnetic resonance derived ejection fraction and pulsed-wave tissue Doppler imaging of the tricuspid annulus. Int J Cardiol 151:58–62

    Article  PubMed  Google Scholar 

  16. Meluzín J, Spinarová L, Bakala J, Toman J, Krejcí J, Hude P, Kára T, Soucek M (2001) Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J 22:340–348

    Article  PubMed  Google Scholar 

  17. Hori Y, Ukai Y, Hoshi F, Higuchi S (2008) Volume loading-related changes in tissue Doppler images derived from the tricuspid valve annulus in dogs. Am J Vet Res 69:33–38

    Article  PubMed  Google Scholar 

  18. Yuda S, Inaba Y, Fujii S, Kokubu N, Yoshioka T, Sakurai S, Nishizato K, Fujii N, Hashimoto A, Uno K, Nakata T, Tsuchihashi K, Miura T, Ura N, Natori H, Shimamoto K (2006) Assessment of left ventricular ejection fraction using long-axis systolic function is independent of image quality: a study of tissue Doppler imaging and m-mode echocardiography. Echocardiography 23:846–852

    Article  PubMed  Google Scholar 

  19. Alam M, Wardell J, Andersson E, Samad BA, Nordlander R (2000) Effects of first myocardial infarction on left ventricular systolic and diastolic function with the use of mitral annular velocity determined by pulsed wave Doppler tissue imaging. J Am Soc Echocardiogr 13:343–352

    Article  CAS  PubMed  Google Scholar 

  20. Seo JS, Kim DH, Kim WJ, Song JM, Kang DH, Song JK (2010) Peak systolic velocity of mitral annular longitudinal movement measured by pulsed tissue Doppler imaging as an index of global left ventricular contractility. Am J Physiol Heart Circ Physiol 298:H1608–H1615

    Article  CAS  PubMed  Google Scholar 

  21. Uemura K, Kawada T, Sunagawa K, Sugimachi M (2011) Peak systolic mitral annulus velocity reflects the status of ventricular-arterial coupling—theoretical and experimental analyses. J Am Soc Echocardiogr 24:582–591

    Article  PubMed  Google Scholar 

  22. Orient JM (2009) Sapira’s art and science of bedside diagnosis. Lippincott Williams & Wilkins, Philadelphia, pp 401–402

    Google Scholar 

  23. Amar D, Melendez JA, Zhang H, Dobres C, Leung DH, Padilla RE (2001) Correlation of peripheral venous pressure and central venous pressure in surgical patients. J Cardiothorac Vasc Anesth 15:40–43

    Article  CAS  PubMed  Google Scholar 

  24. Sobol I, Barst RJ, Nichols K, Widlitz A, Horn E, Bergmann SR (2004) Correlation between right ventricular ejection fraction obtained with gated equilibrium blood pool spect imaging and right atrial pressure in patients with primary pulmonary hypertension. J Nucl Cardiol 11:S25–S26

    Article  Google Scholar 

  25. Greene ES, Gerson JI (1986) One versus two MAC halothane anesthesia does not alter the left ventricular diastolic pressure–volume relationship. Anesthesiology 64:230–237

    Article  CAS  PubMed  Google Scholar 

  26. Uemura K, Kawada T, Inagaki M, Sugimachi M (2013) A minimally invasive monitoring system of cardiac output using aortic flow velocity and peripheral arterial pressure profile. Anesth Analg 116:1006–1017

    Article  CAS  PubMed  Google Scholar 

  27. Jacques DC, Pinsky MR, Severyn D, Gorcsan J 3rd (2004) Influence of alterations in loading on mitral annular velocity by tissue Doppler echocardiography and its associated ability to predict filling pressures. Chest 126:1910–1918

    Article  PubMed  Google Scholar 

  28. Zwissler B, Forst H, Messmer K (1990) Acute pulmonary microembolism induces different regional changes in preload and contraction pattern in canine right ventricle. Cardiovasc Res 24:285–295

    Article  CAS  PubMed  Google Scholar 

  29. Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM (1997) Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 29:709–715

    Article  CAS  PubMed  Google Scholar 

  30. Zou KH, O’Malley AJ, Mauri L (2007) Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 115:654–657

    Article  PubMed  Google Scholar 

  31. Skalska H, Freylich V (2006) Web-bootstrap estimate of area under ROC curve. Aust J Stat 35:325–330

    Google Scholar 

  32. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  33. Bruhl SR, Chahal M, Khouri SJ (2011) A novel approach to standard techniques in the assessment and quantification of the interventricular systolic relationship. Cardiovasc Ultrasound 9:42

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gromadziński L, Targoński R (2007) The role of tissue colour Doppler imaging in diagnosis of segmental pulmonary embolism in congestive heart failure patients. Kardiol Pol 65:1433–1439

    PubMed  Google Scholar 

  35. Drazner MH, Velez-Martinez M, Ayers CR, Reimold SC, Thibodeau JT, Mishkin JD, Mammen PP, Markham DW, Patel CB (2013) Relationship of right- to left-sided ventricular filling pressures in advanced heart failure: insights from the ESCAPE trial. Circ Heart Fail 6:264–270

    Article  PubMed  Google Scholar 

  36. Schober KE, Stern JA, DaCunha DN, Pedraza-Toscano AM, Shemanski D, Hamlin RL (2008) Estimation of left ventricular filling pressure by Doppler echocardiography in dogs with pacing-induced heart failure. J Vet Intern Med 22:578–585

    Article  CAS  PubMed  Google Scholar 

  37. Beigel R, Cercek B, Luo H, Siegel RJ (2013) Noninvasive evaluation of right atrial pressure. J Am Soc Echocardiogr 26:1033–1042

    Article  PubMed  Google Scholar 

  38. Hattori H, Minami Y, Mizuno M, Yumino D, Hoshi H, Arashi H, Nuki T, Sashida Y, Higashitani M, Serizawa N, Yamada N, Yamaguchi J, Mori F, Shiga T, Hagiwara N (2013) Differences in hemodynamic responses between intravenous carperitide and nicorandil in patients with acute heart failure syndromes. Heart Vessels 28:345–351

    Article  PubMed  Google Scholar 

  39. Glantz SA, Kernoff RS (1975) Muscle stiffness determined from canine left ventricular pressure–volume curves. Circ Res 37:787–794

    Article  CAS  PubMed  Google Scholar 

  40. Solomon SB, Nikolic SD, Glantz SA, Yellin EL (1998) Left ventricular diastolic function of remodeled myocardium in dogs with pacing-induced heart failure. Am J Physiol 274:H945–H954

    CAS  PubMed  Google Scholar 

  41. Atherton JJ, Moore TD, Thomson HL, Frenneaux MP (1998) Restrictive left ventricular filling patterns are predictive of diastolic ventricular interaction in chronic heart failure. J Am Coll Cardiol 31:413–418

    Article  CAS  PubMed  Google Scholar 

  42. Takaya Y, Taniguchi M, Sugawara M, Nobusada S, Kusano K, Akagi T, Ito H (2013) Evaluation of exercise capacity using wave intensity in chronic heart failure with normal ejection fraction. Heart Vessels 28:179–187

    Article  PubMed  Google Scholar 

  43. Lam CS, Donal E, Kraigher-Krainer E, Vasan RS (2011) Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail 13:18–28

    Article  PubMed Central  PubMed  Google Scholar 

  44. Magda SL, Ciobanu AO, Florescu M, Vinereanu D (2013) Comparative reproducibility of the noninvasive ultrasound methods for the assessment of vascular function. Heart Vessels 28:143–150

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant-in-Aid for Scientific Research (C-24500565, C-24591087) from the Ministry of Education, Culture, Sports, Science and Technology, and by Intramural Research Fund (22-1-5, 25-2-1) for Cardiovascular Diseases of National Cerebral and Cardiovascular Center.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Uemura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uemura, K., Inagaki, M., Zheng, C. et al. A novel technique to predict pulmonary capillary wedge pressure utilizing central venous pressure and tissue Doppler tricuspid/mitral annular velocities. Heart Vessels 30, 516–526 (2015). https://doi.org/10.1007/s00380-014-0525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0525-4

Keywords

Navigation