Skip to main content

Advertisement

Log in

Nucleotide differences of coxsackievirus B3 and chronic myocarditis

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The in vivo mechanisms in chronic myocarditis remain unclear. The aim of the current study was to clarify the genomic difference of amyocarditic (CB3O) and myocarditic (CB3M) coxsackievirus B3 (CB3) and the pathogenesis of in vivo mechanisms in chronic myocarditis. We examined the histopathology of CB3-inoculated wild-type (WT) and severe combined immunodeficient (SCID) mice with and without adoptive transfer of lymphocytes. There were no differences in viral growth between CB3O and CB3M. There were four to six nucleotide differences in the sequence of CB3O in comparison with the known CB3M. The difference in virus sequence between CB3O and CB3M was very minimal. The changes were located in 1A, 1C, and 1D regions, which encode the structural capsid proteins. Definite myocarditis developed in WT C3H (H-2k) inoculated with CB3M. On the contrary, trivial or mild myocarditis occurred in WT C3H mice inoculated with CB3O. In SCID C3H and SCID C57BL/6 (H-2b) mice, definite myocarditis developed by inoculation with both CB3O and CB3M. Myocardial lesion was less severe in the mice infected with CB3O than in those with CB3M. After anti-CD8 antibody treatment, myocarditis was easily induced in mice originally showing resistance to infection. In addition, chronic myocarditis developed in CB3O-infected SCID C3H mice reconstituted with CB3M-sensitized splenocytes of WT C3H mice. The development of chronic myocarditis primarily depends on the presence or absence of the virus genome, and secondarily on the complex interaction between virus virulence and immunological background of the host. CB3 infection may cause chronic myocarditis with ongoing inflammation with or without viral persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kawai C (1999) From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation 99:1091–1100

    Article  CAS  PubMed  Google Scholar 

  2. Kishimoto C, Kuribayashi K, Fukuma K, Masuda T, Tomioka N, Abelmann WH, Kawai C (1987) Immunologic identification of lymphocyte subsets in experimental murine myocarditis with encephalomyocarditis virus. Different kinetics of lymphocyte subsets between the heart and the peripheral blood, and significance of Thy 1.2+ (pan T) and Lyt 1+, 23+ (immature T) subsets in the development of myocarditis. Circ Res 61:715–725

    Article  CAS  PubMed  Google Scholar 

  3. Flairwealther D, Rose NR (2007) Coxsackievirus-induced myocarditis in mice. A model of autoimmune disease for studying immunotoxicity. Methods 41:118–122

    Article  Google Scholar 

  4. Westermann D, Savvatis K, Lindner D, Zietsch C, Becher PM, Hammer E, Heimesaat MM, Bereswill S, Völker U, Escher F, Riad A, Plendl J, Klingel K, Poller W, Schultheiss HP, Tschöpe C (2011) Reduced degradation of the chemokine MCP-3 by matrix metalloproteinase-2 exacerbates myocardial inflammation in experimental viral cardiomyopathy. Circulation 124:2082–2093

    Article  CAS  PubMed  Google Scholar 

  5. Corsten MF, Papageorgiou A, Verhesen W, Carai P, Lindow M, Obad S, Summer G, Coort SL, Hazebroek M, van Leeuwen R, Gijbels MJ, Wijnands E, Biessen EA, De Winther MP, Stassen FR, Carmeliet P, Kauppinen S, Schroen B, Heymans S (2012) MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ Res 111:415–425

    Article  CAS  PubMed  Google Scholar 

  6. Gangaplara A, Massilamany C, Brown DM, Delhon G, Pattnaik AK, Chapman N, Rose N, Steffen D, Reddy J (2012) Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-α-reactive CD4 T cells in A/J mice. Clin Immunol 144:237–249

    Article  CAS  PubMed  Google Scholar 

  7. Liu W, Moussawi M, Roberts B, Boyson JE, Huber SA (2013) Cross-regulation of T regulatory-cell response after coxsackievirus B3 infection by NKT and γδ T cells in the mouse. Am J Pathol 183:441–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  CAS  PubMed  Google Scholar 

  9. Phillips RA, Spaner DE (1991) The SCID mouse: mutation in a DNA repair gene creates recipients useful for studies on stem cells, lymphocyte development and graft-versus-host disease. Immunol Rev 124:63–74

    Article  CAS  PubMed  Google Scholar 

  10. Duchosal MA, McConahey PJ, Robinson CA, Dixon FJ (1990) Transfer of human systemic lupus erythematosus in severe combined immunodeficient (SCID) mice. J Exp Med 172:985–988

    Article  CAS  PubMed  Google Scholar 

  11. Tighe H, Silverman GJ, Kozin F, Tucker R, Gulizia R, Peebles C, Lotz M, Rhodes G, Machold K, Mosier DE, Carson DA (1990) Autoantibody production by severe combined immunodeficient mice reconstituted with synovial cells from rheumatoid arthritis patients. Eur J Immunol 20:1843–1848

    Article  CAS  PubMed  Google Scholar 

  12. Gauntt CJ, Trousdale MD, LaBadie DR, Paque RE, Nealon T (1979) Properties of coxsackievirus B3 variants which are amyocarditic or myocarditic for mice. J Med Virol 3:207–220

    Article  CAS  PubMed  Google Scholar 

  13. Beck MA, Shi Q, Morris VC, Levander OA (1995) Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium deficient mice results in selection of identical virulent isolates. Nat Med 1:433–436

    Article  CAS  PubMed  Google Scholar 

  14. Kishimoto C (1994) Analysis of the pathogenesis of coxsackievirus B3 myocarditis: Comparison of myocarditic and amyocarditic coxsackievirus B3 strains. In: Nagano M, Takeda N, Dhalla NS (eds) The cardiomyopathic hearts. Raven Press, New York, pp 309–312

    Google Scholar 

  15. Takada H, Kishimoto C, Kurokawa M, Hiraoka Y (2003) Amyocarditic coxsackievirus B3 causes myocarditis in immunocompromised mice. Exp Clin Cardiol 8:71–75

    PubMed Central  PubMed  Google Scholar 

  16. Kishimoto C, Hiraoka Y, Takada H (2001) T cell-mediated immune response enhances the severity of myocarditis in secondary cardiotropic virus infection in mice. Basic Res Cardiol 96:436–445

    Article  Google Scholar 

  17. Saito K, Torii M, Ma N, Tsuchiya T, Wang L, Hori T, Nagakubo D, Nitta N, Kanegasaki S, Hieshima K, Yoshie O, Gabazza EC, Katayama N, Shiku H, Kuribayashi K, Kato T (2008) Differential regulatory function of resting and preactivated allergen-specific CD4+ CD25+ regulatory T cells in Th2-type airway inflammation. J Immunol 181:6889–6897

    Article  CAS  PubMed  Google Scholar 

  18. Nishikawa H, Kato T, Tawara I, Ikeda H, Kuribayashi K, Allen PM, Schreiber RD, Old LJ, Shiku H (2005) IFN-gamma controls the generation/activation of CD4+ CD25+ regulatory T cells in antitumor immune response. J Immunol 175:4433–4440

    Article  CAS  PubMed  Google Scholar 

  19. Kishimoto C, Kuroki Y, Hiraoka Y, Ochiai H, Kurokawa M, Sasayama S (1994) Cytokine and murine coxsackievirus B3 myocarditis. Interleukin-2 suppressed myocarditis in the acute stage but enhanced the condition in the subsequent stage. Circulation 89:2836–2842

    Article  CAS  PubMed  Google Scholar 

  20. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observation. J Am Stat Assoc 53:457–462

    Google Scholar 

  21. Lindberg AM, Stålhandske PO, Pettersson U (1987) Genome of coxsackievirus B3. Virology 156:50–63

    Article  CAS  PubMed  Google Scholar 

  22. Klump WM, Bergmann I, Müller BC, Ameis D, Kandolf R (1990) Complete nucleotide sequence of infectious coxsackievirus B3 cDNA. Two initial 5′ uridine residues are regained during plus-strand RNA synthesis. J Virol 64:1573–1583

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Yuan Z, Shioji K, Kishimoto C (2003) Immunohistological analyses of myocardial infiltrating cells in various animal models of myocarditis. Exp Clin Cardiol 8:13–16

    PubMed Central  PubMed  Google Scholar 

  24. Kishimoto C, Misaki T, Crumpacker CS, Abelmann WH (1988) Serial immunologic identification of lymphocyte subsets in murine coxsackievirus B3 myocarditis. Different kinetics and significance of lymphocyte subsets in the heart and in peripheral blood. Circulation 77:645–653

    Article  CAS  PubMed  Google Scholar 

  25. Tu Z, Chapman NM, Hufnagel G, Tracy S, Romero JR, Barry WH, Zhao L, Currey K, Shapiro B (1995) The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5′ nontranslated region. J Virol 69:4607–4618

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Smith SC, Allen PM (1992) Expression of myosin-class II major histocompatibility complexes in the normal myocardium occurs before induction of autoimmune myocarditis. Proc Natl Acad Sci USA 89:9131–9135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cunningham MW, Antone SM, Gulizia JM, McManus BM, Fischetti VA, Gauntt CJ (1992) Cytotoxic and viral neutralizing antibodies crossreact with streptococcal M protein, enteroviruses, and human cardiac myosin. Proc Natl Acad Sci USA 89:1320–1324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kishimoto C, Abelmann WH (1990) In vivo significance of T cells in the development of Coxsackievirus B3 myocarditis in mice. Immature but antigen-specific T cells aggravate cardiac injury. Circ Res 67:589–598

    Article  CAS  PubMed  Google Scholar 

  29. Henke A, Huber S, Stelzner A, Whitton JL (1995) The role of CD8+ T lymphocytes in coxsackievirus B3-induced myocarditis. J Virol 69:6720–6728

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Weinzierl AO, Szalay G, Wolburg H, Sauter M, Rammensee HG, Kandolf R, Stevanović S, Klingel K (2008) Effective chemokine secretion by dendritic cells and expansion of cross-presenting CD4−/CD8+ dendritic cells define a protective phenotype in the mouse model of coxsackievirus myocarditis. J Virol 82:8149–8160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kodama M, Matsumoto Y, Fujiwara M (1992) In vivo lymphocyte mediated myocardial injuries demonstrated by adoptive transfer of experimental autoimmune myocarditis. Circulation 85:1918–1926

    Article  CAS  PubMed  Google Scholar 

  32. Kodama M, Hanawa H, Saeki M, Hosono H, Inomata T, Suzuki K, Shibata A (1994) Rat dilated cardiomyopathy after autoimmune giant cell myocarditis. Circ Res 75:278–284

    Article  CAS  PubMed  Google Scholar 

  33. Inomata T, Hanawa H, Miyanishi T, Yajima E, Nakayama S, Maita T, Kodama M, Izumi T, Shibata A, Abo T (1995) Localization of porcine cardiac myosin epitopes that induce experimental autoimmune myocarditis. Circ Res 76:726–733

    CAS  PubMed  Google Scholar 

  34. Hanawa H, Inomata T, Sekikawa H, Abo T, Kodama M, Izumi T, Shibata A (1996) Analysis of heart-infiltrating T-cell clonotypes in experimental autoimmune myocarditis in rats. Circ Res 78:118–125

    Article  CAS  PubMed  Google Scholar 

  35. Wegmann KW, ZhaoW Griffin AC, Hickey WF (1994) Identification of myocarditogenic peptides derived from cardiac myosin capable of inducing experimental allergic myocarditis in the Lewis rat. J Immunol 153:892–900

    CAS  PubMed  Google Scholar 

  36. Smith SC, Allen PM (1991) Myosin-induced acute myocarditis is a T cell-mediated disease. J Immunol 147:2141–2147

    CAS  PubMed  Google Scholar 

  37. Schwimmbeck PL, Badorff C, Schultheiss HP, Strauer BE (1994) Transfer of human myocarditis into severe combined immunodeficiency mice. Circ Res 75:156–164

    Article  CAS  PubMed  Google Scholar 

  38. Barbaro G (2002) Cardiovascular manifestations of HIV infection. Circulation 106:1420–1425

    Article  PubMed  Google Scholar 

  39. Ntsekhe M, Hakim J (2005) Impact of human immunodeficiency virus infection on cardiovascular disease in Africa. Circulation 112:3602–3607

    Article  PubMed  Google Scholar 

  40. Hufnagel G, Chapman N, Tracy S (1995) A non-cardiovirulent strain of coxsackievirus B3 causes myocarditis in mice with severe combined immunodeficiency syndrome. Eur Heart J 16(Suppl):18–19

    Article  PubMed  Google Scholar 

  41. Abe T, Tsuda E, Miyazaki A, Ishibashi-Ueda H, Yamada O (2013) Clinical characteristics and long-term outcome of acute myocarditis in children. Heart Vessel 28:632–638

    Article  Google Scholar 

  42. Ishida K, Wada H, Sakakura K, Kubo N, Ikeda N, Sugawara Y, Ako J, Momomura S (2013) Long-term follow-up on cardiac function following fulminant myocarditis requiring percutaneous extracorporeal cardiopulmonary support. Heart Vessel 28:86–90

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grants from The Univers Foundation, Shimizu Immunology Foundation, Chronic Disease and Rehabilitation Research Foundation, the Japanese Ministry of Education, Science, and Culture (18590772 and 23591040), and Japan Cardiovascular Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiharu Kishimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishimoto, C., Takamatsu, N., Ochiai, H. et al. Nucleotide differences of coxsackievirus B3 and chronic myocarditis. Heart Vessels 30, 126–135 (2015). https://doi.org/10.1007/s00380-014-0478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0478-7

Keywords

Navigation