The 2020/21 Extremely Cold Winter in China Influenced by the Synergistic Effect of La Niña and Warm Arctic

Abstract

In the first half of winter 2020/21, China has experienced an extremely cold period across both northern and southern regions, with record-breaking low temperatures set in many stations of China. Meanwhile, a moderate La Niña event which exceeded both oceanic and atmospheric thresholds began in August 2020 and in a few months developed into its mature phase, just prior to the 2020/21 winter. In this report, the mid-high-latitude large-scale atmospheric circulation anomalies in the Northern Hemisphere, which were forced by the negative phase of Arctic Oscillation, a strengthened Siberian High, an intensified Ural High and a deepened East Asian Trough, are considered to be the direct reason for the frequent cold surges in winter 2020/21. At the same time, the synergistic effect of the warm Arctic and the cold tropical Pacific (La Niña) provided an indispensable background, at a hemispheric scale, to intensify the atmospheric circulation anomalies in middle-to-high latitudes. In the end, a most recent La Niña prediction is provided and the on-coming evolution of climate is discussed for the remaining part of the 2020/21 winter for the purpose of future decision-making and early warning.

References

  1. Ballinger, T. J., and Coauthors, 2020: Surface air temperature. Arctic Report Card: Update for 2020, https://doi.org/10.25923/gcw8-2z06.

  2. Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, Amer. Meteor. Soc.

    Google Scholar 

  3. Chen, W., X. Q. Lan, L. Wang, and Y. Ma, 2013: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chinese Science Bulletin, 58(12), 1355–1362, https://doi.org/10.1007/s11434-012-5654-5.

    Article  Google Scholar 

  4. Cohen, J. L., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10, 20–29, https://doi.org/10.1038/s41558-019-0662-y.

    Article  Google Scholar 

  5. Cohen, J. L., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627–637, https://doi.org/10.1038/ngeo2234.

    Article  Google Scholar 

  6. Ding, Y. H., Z. Y. Wang, Y. F. Song, and J. Zhang, 2008: Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming. Acta Meteorological Sinica, 66, 808–825, https://doi.org/10.3321/j.issn:0577-6619.2008.05.014.

    Google Scholar 

  7. Gao, H., 2009: China’s snow disaster in 2008, who is the principal player? International Journal of Climatology, 29, 2191–2196, https://doi.org/10.1002/joc.1859.

    Article  Google Scholar 

  8. Hu, Z. Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Niñas followed by another La Niña? Climate Dyn, 42, 1029–1042, https://doi.org/10.1007/s00382-013-1917-3.

    Article  Google Scholar 

  9. Huang, B. Y., and Coauthors, 2017a: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    Article  Google Scholar 

  10. Huang, J. B., and Coauthors, 2017b: Recently amplified arctic warming has contributed to a continual global warming trend. Nature Climate Change, 7, 875–879, https://doi.org/10.1038/s41558-017-0009-5.

    Article  Google Scholar 

  11. Huang, R. H., and W. Chen, 2002: Recent progresses in the research on the interaction between Asian monsoon and ENSO cycle. Climatic and Environmental Research, 7(2), 146–159, https://doi.org/10.3969/j.issn.1006-9585.2002.02.003. (in Chinese with English abstract)

    Google Scholar 

  12. Li, J. P., F. Zheng, C. Sun, J. Feng, and J. Wang, 2019: Pathways of influence of the northern hemisphere mid-high latitudes on East Asian climate: A review. Adv. Atmos. Sci., 36, 902–921, https://doi.org/10.1007/s00376-019-8236-5.

    Article  Google Scholar 

  13. Liu, Y. Q., and Y. H. Ding, 1992: Influence of ENSO events on weather and climate of China. Quarterly Journal of Applied Meteorology, 3(4), 473–481. (in Chinese with English abstract)

    Google Scholar 

  14. Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32(1), 3–15, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    Article  Google Scholar 

  15. Maykut, G. A., 1982: Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res. Oceans, 87, 7971–7984, https://doi.org/10.1029/JC087iC10p07971.

    Article  Google Scholar 

  16. Taylor, P. C., B. M. Hegyi, R. C. Boeke, and L. N. Boisvert, 2018: On the increasing importance of air-sea exchanges in a thawing Arctic: A review. Atmosphere, 9(2), 41, https://doi.org/10.3390/atmos9020041.

    Article  Google Scholar 

  17. Wang, Z. Y., Y. H. Ding, B. T. Zhou, and L. J. Chen, 2020: Comparison of two severe low-temperature snowstorm and ice freezing events in China: Role of Eurasian mid-high latitude circulation patterns. International Journal of Climatology, 40(7), 3436–3450, https://doi.org/10.1002/joc.6406.

    Article  Google Scholar 

  18. Wu, B. Y., and J. Wang, 2002: Winter Arctic Oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29, 1897, https://doi.org/10.1029/2002GL015373.

    Google Scholar 

  19. Wu, B. Y., J. Z. Su, and R. H. Zhang, 2011a: Effects of autumn-winter arctic sea ice on winter Siberian high. Chinese Science Bulletin, 56, 3220–3228, https://doi.org/10.1007/s11434-011-4696-4.

    Article  Google Scholar 

  20. Wu, B. Y., K. Yang, and J. A. Francis, 2016: Summer Arctic dipole wind pattern affects the winter Siberian High. International Journal of Climatology, 36, 4187–4201, https://doi.org/10.1002/joc.4623.

    Article  Google Scholar 

  21. Wu, Z. W., J. P. Li, Z. H. Jiang, and J. H. He, 2011b: Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter. Climate Dyn., 37, 1661–1669, https://doi.org/10.1007/s00382-010-0938-4.

    Article  Google Scholar 

  22. Yang, S., K. M. Lau, and K. M. Kim, 2002: Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J. Climate, 15(3), 306–325, https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2.

    Article  Google Scholar 

  23. Yuan, Y., and H. M. Yan, 2013: Different types of La Niña events and different responses of the tropical atmosphere. Chinese Science Bulletin, 58, 406–415, https://doi.org/10.1007/s11434-012-5423-5.

    Article  Google Scholar 

  24. Yuan, Y., C. Y. Li, and S. Yang, 2014: Decadal anomalies of winter precipitation over southern China in association with El Nino and La Niña. J. Meteor. Res., 28(1), 91–110, https://doi.org/10.1007/s13351-014-0106-6.

    Google Scholar 

  25. Zhang, Q. Y., S. L. Xuan, and J. B. Peng, 2008: Relationship between Asian circulation in the middle-high latitude and snowfall over South China during La Niña events. Climatic and Environmental Research, 13(4), 385–394, https://doi.org/10.3878/j.issn.1006-9585.2008.04.04. (in Chinese with English abstract)

    Google Scholar 

  26. Zheng, F., and J. Zhu, 2010: Coupled assimilation for an intermediated coupled ENSO prediction model. Ocean Dynamics, 60(5), 1061–1073, https://doi.org/10.1007/s10236-010-0307-1.

    Article  Google Scholar 

  27. Zheng, F., and J. Zhu, 2016: Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Climate Dyn., 47(12), 3901–3915, https://doi.org/10.1007/s00382-016-3048-0.

    Article  Google Scholar 

  28. Zheng, F., and J. Y. Yu, 2017: Contrasting the skills and biases of deterministic predictions for the two types of El Niño. Adv. Atmos. Sci., 34(12), 1395–1403, https://doi.org/10.1007/s00376-017-6324-y.

    Article  Google Scholar 

  29. Zheng, F., J. Zhu, R. H. Zhang, and G. Q. Zhou, 2006: Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 331(19), L19604, https://doi.org/10.1029/2006GL026994.

    Article  Google Scholar 

  30. Zheng, F., J. Zhu, and R. H. Zhang, 2007: Impact of altimetry data on ENSO ensemble initializations and predictions. Geophys. Res. Lett., 34(13), L13611, https://doi.org/10.1029/2007GL030451.

    Article  Google Scholar 

  31. Zheng, F., J. Zhu, H. Wang, and R. H. Zhang, 2009: Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv. Atmos. Sci., 26(2), 359–372, https://doi.org/10.1007/s00376-009-0359-7.

    Article  Google Scholar 

  32. Zheng, F., L. S. Feng, and J. Zhu, 2015: An incursion of off-equatorial subsurface cold water and its role in triggering the “double dip” La Niña event of 2011. Adv. Atmos. Sci., 32(6), 731–742, https://doi.org/10.1007/s00376-014-4080-9.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the national key R&D Program of China (Grant No 2018YFC1505603), the Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-DQC010), and the National Natural Science Foundation of China (Grant Nos. 41876012; 41861144015).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fei Zheng or Yuan Yuan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Yuan, Y., Ding, Y. et al. The 2020/21 Extremely Cold Winter in China Influenced by the Synergistic Effect of La Niña and Warm Arctic. Adv. Atmos. Sci. (2021). https://doi.org/10.1007/s00376-021-1033-y

Download citation

Key words

  • extremely cold winter
  • anomalous atmospheric circulation
  • synergistic effect
  • La Niña
  • warm Arctic