Atmospheric River Signatures in Radiosonde Profiles and Reanalyses at the Dronning Maud Land Coast, East Antarctica

Abstract

Atmospheric rivers (ARs) are an important component of the hydrological cycle linking moisture sources in lower latitudes to the Antarctic surface mass balance. We investigate AR signatures in the atmospheric vertical profiles at the Dronning Maud Land coast, East Antarctica, using regular and extra radiosonde measurements conducted during the Year of Polar Prediction Special Observing Period November 2018 to February 2019. Prominent AR events affecting the locations of Neumayer and Syowa cause a strong increase in specific humidity extending through the mid-troposphere and a strong low-level jet (LLJ). At Neumayer, the peak in the moisture inversion (up to 4 g kg−1) is observed between 800 and 900 hPa, while the LLJ (up to 32 m s−1) is concentrated below 900 hPa. At Syowa the increase in humidity is less pronounced and peaks near the surface, while there is a substantial increase in wind speed (up to 40 m s−1) between 825 and 925 hPa. Moisture transport (MT) within the vertical profile during the ARs attains a maximum of 100 g kg−1 m s−1 at both locations, and is captured by both ERA-Interim and ERA5 reanalysis data at Neumayer, but is strongly underestimated at Syowa. Composites of the enhanced MT events during 2009-19 show that these events represent an extreme state of the lower-tropospheric profile compared to its median values with respect to temperature, humidity, wind speed and, consequently, MT. High temporal- and vertical-resolution radiosonde observations are important for understanding the contribution of these rare events to the total MT towards Antarctica and improving their representation in models.

摘 要

大气河(ARs)是水循环的重要组成部分,它将低纬度地区的水汽源与南极地表的质量平衡联系在一起。我们使用极地预报年特别观测期2018年11月至2019年2月期间进行的常规和增测的探空测量,研究了南极东部德龙宁莫德海岸大气垂直剖面中的AR特征。影响Neumayer和Syowa区域的主要的AR事件导致穿过对流层中层和低空急流(LLJ)的相对湿度急剧增加。在Neumayer区域,在800–900 hPa之间观察到了水汽的峰值(最高4 g kg-1),而低空急流(最高32 m s-1)则集中在900 hPa以下。在Syowa,湿度的增加相对来说并不明显且在地表附近达到峰值,在825–925 hPa之间风速显著加强(最高40 m s-1)。AR期间垂直剖面内的水汽传输(MT)在两个区域均达到最大值100 g kg-1 m s-1,在Neumayer区域,ERA-Interim和ERA5再分析数据中都能很好地再现水汽传输的增强,在Syowa区域,再分析数据低估了水汽传输的强度。对2009–2019年期间强MT事件的合成分析表明,相对于温度,湿度,风速以及MT的中值情况,这些事件代表了对流层低层剖面的极端状态。高时间和垂直分辨率的探空观测对于了解这些罕见事件对南极洲总水汽输送的贡献以及改善其在模式中的表现具有非常重要的意义。

References

  1. Bintanja, R., 2000: Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description. Bound.-Layer Meteorol., 95, 343–368, https://doi.org/10.1023/A:1002676804487

    Article  Google Scholar 

  2. Boening, C., M. Lebsock, F. Landerer, and G. Stephens, 2012: Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett, 39, L21501, https://doi.org/10.1029/2012GL053316

    Google Scholar 

  3. Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev, 108, 1046–1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2

    Article  Google Scholar 

  4. Bozkurt, D., R. Rondanelli, J. C. Marín, and R. Garreaud, 2018: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res, 123, 3871–3892, https://doi.org/10.1002/2017JD027796

    Article  Google Scholar 

  5. Bromwich, D. H., F. M. Robasky, R. I. Cullather, and M. L. van Woert, 1995: The atmospheric hydrologic cycle over the Southern Ocean and Antarctica from operational numerical analyses. Mon. Wea. Rev, 123, 3518–3538, https://doi.org/10.1175/1520-0493(1995)123<3518:TAHCOT>2.0.CO;2

    Article  Google Scholar 

  6. Browning, K. A., 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteorological Applications, 4, 317–324, https://doi.org/10.1017/S1350482797000613

    Article  Google Scholar 

  7. Burrows, D. A., C.R. Ferguson, M. A. Campbell, G. Xia, and L. F. Bosart, 2019: An Objective Classification and Analysis of Upper-Level Coupling to the Great Plains Low-Level Jet over the Twentieth Century. J. Climate, 32, 7127–7152, https://doi.org/10.1175/JCLI-D-18-0891.1

    Article  Google Scholar 

  8. Connolley, W. M., and J. C. King, 1993: Atmospheric water-vapour transport to Antarctica inferred from radiosonde data. Quart. J. Roy. Meteorol. Soc., 119, 325–342, https://doi.org/10.1002/qj.49711951006

    Article  Google Scholar 

  9. Cordeira, J. M., F. M. Ralph, A. Martin, N. Gaggini, J. R. Spack-man, P. J. Neiman, J. J. Rutz, and R. Pierce, 2017: Forecasting atmospheric rivers during CalWater 2015. Bull. Amer. Met-eorol. Soc, 98, 449–459, https://doi.org/10.1175/BAMS-D-15-00245.1

    Article  Google Scholar 

  10. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc, 137, 553–597, https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  11. Dufour, A., C. Charrondière, and O. Zolina, 2019: Moisture transport in observations and reanalyses as a proxy for snow accumulation in East Antarctica. The Cryosphere, 13, 413–425, https://doi.org/10.5194/tc-13-413-2019

    Article  Google Scholar 

  12. Durre, I., and X. G. Yin, 2008: Enhanced radiosonde data for studies of vertical structure. Bull. Amer. Meteorol. Soc, 89, 1257–1262, https://doi.org/10.1175/2008BAMS2603.1

    Article  Google Scholar 

  13. Durre, I., R. S. Vose, and D. B. Wuertz, 2008: Robust automated quality assurance of radiosonde temperatures. Journal of Applied Meteorology & Climatology, 47, 2081–2095, https://doi.org/10.1175/2008JAMC1809.1

    Article  Google Scholar 

  14. Durre, I., X. G. Yin, R. S. Vose, S. Applequist, and J. Arnfield, 2016: Integrated Global Radiosonde Archive (IGRA) Version 2. [Sounding data for the full period of record]. NOAA National Centers for Environmental Information, https://doi.org/10.7289/v5x63k0q

    Google Scholar 

  15. Ferreira, A. P., R. Nieto, and L. Gimeno, 2019: Completeness of radiosonde humidity observations based on the Integrated global Radiosonde Archive. Earth System Science Data, 11, 603–627, https://doi.org/10.5194/essd-11-603-2019

    Article  Google Scholar 

  16. Fretwell, P., and Coauthors, 2013: Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013

    Article  Google Scholar 

  17. Gettelman, A., V. P. Walden, L. M. Miloshevich, W. L. Roth, and B. Halter, 2006: Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J. Geo-phys. Res., 111, D09S13, https://doi.org/10.1029/2005JD006636

    Article  Google Scholar 

  18. Gorodetskaya, I. V., N. P. M. van Lipzig, M. R. van den Broeke, A. Mangold, W. Boot, and C. H. Reijmer, 2013: Meteorological regimes and accumulation patterns at Utsteinen, Dron-ning Maud Land, East Antarctica: Analysis of two contrasting years. J. Geophys. Res, 118, 1700–1715, https://doi.org/10.1002/jgrd.50177

    Article  Google Scholar 

  19. Gorodetskaya, I. V., M. Tsukernik, K. Claes, M. F. Ralph, W. D. Neff, and N. P. M. van Lipzig, 2014: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett., 41, 6199–6206, https://doi.org/10.1002/2014GL060881

    Article  Google Scholar 

  20. Gossart, A., and Coauthors, 2017: Blowing snow detection from ground-based ceilometers: Application to East Antarctica. The Cryosphere, 11, 2755–2772, https://doi.org/10.5194/tc-11-2755-2017

    Article  Google Scholar 

  21. Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res, 120, 12 514–12 535, https://doi.org/10.1002/2015JD024257

    Google Scholar 

  22. Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter No. 159, https://doi.org/10.21957/vf291hehd7

  23. Hirasawa, N., 2017: Japanese activity and plan for YOPP-SH. YOPP-SH Workshop, National Center for Atmospheric Research, Boulder, Colorado, USA, 28 June 2017-29 June 2017. [Available online from http://polarmet.osu.edu/YOPP-SH/Presentations_201706/1_03_Hirasawa.pdf]

    Google Scholar 

  24. Ingleby, B., 2017: An assessment of different radiosonde types 2015/2016. ECMWF Technical Memoranda 807, https://doi.org/10.21957/0nje0wpsa

    Google Scholar 

  25. Jakobs, C. L., C. H. Reijmer, P. Kuipers Munneke, G. König-Lan-glo, and M. R. van den Broeke, 2019: Quantifying the snow-melt-albedo feedback at Neumayer Station, East Antarctica. The Cryosphere, 13, 1473–1485, https://doi.org/10.5194/tc-13-1473-2019

    Article  Google Scholar 

  26. Jensen, M. P., D. J. Holdridge, P. Survo, R. Lehtinen, S. Baxter, T. Toto, and K. L. Johnson, 2016: Comparison of Vaisala radiosondes RS41 and RS92 at the ARM southern Great Plains site. Atmospheric Measurement Techniques, 9, 3115–3129, https://doi.org/10.5194/amt-9-3115-2016

    Article  Google Scholar 

  27. Jung, T., and Coauthors, 2016: Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Amer. Meteorol. Soc., 97, 1631–1647, https://doi.org/10.1175/BAMS-D-14-00246.1

    Article  Google Scholar 

  28. Kawai, Y., M. Katsumata, K. Oshima, M. E. Hori, and J. Inoue, 2017: Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics. Atmospheric Measurement Techniques, 10, 2485–2498, https://doi.org/10.5194/amt-10-2485-2017

    Article  Google Scholar 

  29. King, M. A., R. J. Bingham, P. Moore, P. L. Whitehouse, M. J. Bentley, and G. A. Milne, 2012: Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature, 491, 586–589, https://doi.org/10.1038/nature11621

    Article  Google Scholar 

  30. Kizu, N., T. Sugidachi, E. Kobayashi, S. Hoshino, K. Shimizu, R. Maeda, and M. Fujiwara, 2018: Technical characteristics and GRUAN data processing for the Meisei RS-11G and iMS-100 radiosondes. GRUAN-TD-5). GRUAN Lead Centre, Lindenberg, Germany.

    Google Scholar 

  31. Klöwer, M., T. Jung, G. König-Langlo, and T. Semmler, 2013: Aspects of weather parameters at Neumayer station, Antarctica, and their representation in reanalysis and climate model data. Meteorol. Z., 22, 699–709, https://doi.org/10.1127/0941-2948/2013/0505

    Article  Google Scholar 

  32. Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 3031–3045, https://doi.org/10.1175/JCLI-D-12-00401.1

    Article  Google Scholar 

  33. Kobayashi, E., S. Hoshino, M. Iwabuchi, T. Sugidachi, K. Shim-izu, and M. Fujiwara, 2019: Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06°N, 140.13°E), Japan. Atmospheric Measurement Techniques, 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019

    Article  Google Scholar 

  34. König-Langlo, G., and B. Loose, 2007: The meteorological observatory at Neumayer stations (GvN and NM-II) Antarctica. Polarforschung, 76, 25–38.

    Google Scholar 

  35. König-Langlo, G., J. C. King, and P. Pettré, 1998: Climatology of the three coastal Antarctic stations Dumont D'urville, Neumayer, and Halley. J. Geophys. Res, 103, 10 935–10 946, https://doi.org/10.1029/97JD00527

    Article  Google Scholar 

  36. Konishi, H., M. Wada, and T. Endoh, 1998: Seasonal variations of cloud and precipitation at Syowa Station, Antarctica. Annals of Glaciology, 27, 597–602, https://doi.org/10.3189/1998AoG27-1-597-602

    Article  Google Scholar 

  37. Kurita, N., N. Hirasawa, S. Koga, J. Matsushita, H. C. Steen-Larsen, V. Masson-Delmotte, and Y. Fujiyoshi, 2016: Identification of air masses responsible for warm events on the East Antarctic Coast. SOLA, 12, 307–313, https://doi.org/10.2151/sola.2016-060

    Article  Google Scholar 

  38. Lenaerts, J. T. M., M. R. van den Broeke, S. J. Déry, G. König-Langlo, J. Ettema, and P. K. Munneke, 2010: Modelling snowdrift sublimation on an Antarctic ice shelf. The Cryosphere, 4, 179–190, https://doi.org/10.5194/tc-4-179-2010

    Article  Google Scholar 

  39. Lenaerts, J. T. M., E. van Meijgaard, M. R. van den Broeke, S. R. M. Ligtenberg, M. Horwath, and E. Isaksson, 2013: Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett, 40, 2684–2688, https://doi.org/10.1002/grl.50559

    Article  Google Scholar 

  40. Murray, F. W., 1967: On the computation of saturation vapor pressure. J. Appl. Meteor, 6, 203–204, https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2

    Article  Google Scholar 

  41. Nash, D., D. Waliser, B. Guan, B. H. C. Ye, and F. M. Ralph, 2018: The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res., 123, 6804–6821, https://doi.org/10.1029/2017JD028130

    Google Scholar 

  42. Nygård, T., T. Valkonen, and T. Vihma, 2013: Antarctic low-tropo-spheric humidity inversions: 10-yr climatology. J. Climate, 26, 5205–5219, https://doi.org/10.1175/JCLI-D-12-00446.1

    Article  Google Scholar 

  43. Parish, T. R., 1983: The influence of the Antarctic Peninsula on the wind field over the western Weddell Sea. J. Geophys. Res., 88, 2684–2692, https://doi.org/10.1029/JC088iC04p02684

    Article  Google Scholar 

  44. Parish, T. R., and D. H. Bromwich, 2007: Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes. Mon. Wea. Rev., 135, 1961–1973, https://doi.org/10.1175/MWR3374.1

    Article  Google Scholar 

  45. Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 1721–1745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2

    Article  Google Scholar 

  46. Ralph, F. M., J. M. Cordeira, P. J. Neiman, and M. Hughes, 2016: Landfalling Atmospheric Rivers, the Sierra Barrier Jet, and extreme daily precipitation in northern California’s Upper Sacramento River Watershed. Journal of Hydrometeorology, 17, 1905–1914, https://doi.org/10.1175/JHM-D-15-0167.1

    Article  Google Scholar 

  47. Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteorol. Soc., 100, 269–289, https://doi.org/10.1175/BAMS-D-18-0023.1

    Article  Google Scholar 

  48. Rowe, P. M, L. M. Miloshevich, D. D. Turner, and V. P. Walden, 2008: Dry bias in Vaisala RS90 radiosonde humidity profiles over Antarctica. J. Atmos. Oceanic Techol, 25, 1529–1541, https://doi.org/10.1175/2008JTECHA1009.1

    Article  Google Scholar 

  49. Sato, K., and N. Hirasawa, 2007: Statistics of Antarctic surface meteorology based on hourly data in 1957-2007 at Syowa Station. Polar Science, 1, 1–15, https://doi.org/10.1016/j.polar.2007.05.001

    Article  Google Scholar 

  50. Schlosser, E., J. G. Powers, M. G. Duda, K. W. Manning, C. H. Reijmer, and M. R. van den Broeke, 2010: An extreme precipitation event in Dronning Maud Land, Antarctica: A case study with the Antarctic Mesoscale Prediction System. Polar Research, 29, 330–344, https://doi.org/10.3402/polar.v29i3.6072

    Article  Google Scholar 

  51. Schmithüsen, H., 2020: Meteorological synoptical observations from Neumayer Station, 1981-01 to 2019-01, reference list of 457 datasets. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.911242

    Google Scholar 

  52. Schmithüsen, H., and H. Müller, 2019a: Radiosonde measurements from Neumayer Station (2018-11; 2018-12; 2019-01). Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.900641

    Google Scholar 

  53. Schmithüsen, H., and H. Müller, 2019b: Radiosonde measurements from Neumayer Station (2018-12). Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.900642

    Google Scholar 

  54. Schmithüsen, H., and H. Müller, 2019c: Radiosonde measurements from Neumayer Station (2019-01). Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.900631

    Google Scholar 

  55. Schmithüsen, H., S. Arndt, M. Nicolaus, M. Hoppmann, and C. Haas, S. Henning, and G. Heinemann, 2017: German contribution to YOPP-SH, Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Proc. YOPP-SH Workshop, Colorado, National Center for Atmospheric Research, Boulder, USA, https://doi.org/10013/epic.51386.d001

    Google Scholar 

  56. Seefeldt, M. W., and J. J. Cassano, 2008: An analysis of low-level jets in the Greater Ross Ice shelf region based on numerical simulations. Mon. Wea. Rev., 136, 4188–4205, https://doi.org/10.1175/2008MWR2455.1

    Article  Google Scholar 

  57. Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geoscientific Model Development, 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018

    Article  Google Scholar 

  58. Sinclair, V. A., and H. F. Dacre, 2019: Which extratropical cyclones contribute most to the transport of moisture in the Southern Hemisphere? J. Geophys. Res., 124, 2525–2545, https://doi.org/10.1029/2018JD028766

    Article  Google Scholar 

  59. Sodemann, H. and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 2850–2868, https://doi.org/10.1175/MWR-D-12-00256.1

    Article  Google Scholar 

  60. Souverijns, N., A. Gossart, I. V. Gorodetskaya, S. Lhermitte, A. Mangold, Q. Laffineur, A. Delcloo, and N. P. M. van Lipzig, 2018: How does the ice sheet surface mass balance relate to snowfall? Insights from a ground-based precipitation radar in East Antarctica The Cryosphere, 12, 1987–2003, https://doi.org/10.5194/tc-12-1987-2018

    Google Scholar 

  61. Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Met-eorol. Soc, 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1

    Article  Google Scholar 

  62. Sugidachi, T., and M. Fujiwara, 2013: Correction of the stepwise change observed at 0°C in Meisei RS2-91, RS-01G, and RS-06G Radiosonde relative humidity profiles. J. Meteorol. Soc. Japan, 91, 323–336, https://doi.org/10.2151/jmsj.2013-306

    Article  Google Scholar 

  63. Sun, B. M., A. Reale, S. Schroeder, D. J. Seidel, and B. Ballish, 2013: Toward improved corrections for radiation-induced biases in radiosonde temperature observations. J. Geophys. Res, 118, 4231–4243, https://doi.org/10.1002/jgrd.50369

    Google Scholar 

  64. Thyssen, F., and K. Grosfeld, 1988: Ekström ice shelf, Antarctica. Annals of Glaciology, 11, 180–183, https://doi.org/10.3189/S0260305500006510

    Article  Google Scholar 

  65. Tomasi, C., and Coauthors, 2006: Characterization of the atmospheric temperature and moisture conditions above Dome C (Antarctica) during austral summer and fall months. J. Geo-phys. Res., 111, D20305, https://doi.org/10.1029/2005JD006976

    Article  Google Scholar 

  66. Tsukernik, M., and A. H. Lynch, 2013: Atmospheric meridional moisture flux over the Southern Ocean: A story of the Amundsen Sea. J. Climate, 26, 8055–8064, https://doi.org/10.1175/JCLI-D-12-00381.1

    Article  Google Scholar 

  67. Turner, J. and S. Pendlebury, 2004: The International Antarctic Weather Forecasting Handbook. British Antarctic Survey, Cambridge, UK, 663 pp.

    Google Scholar 

  68. Turner, J., and Coauthors, 2019: The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett., 46, 3502–3511, https://doi.org/10.1029/2018GL081517

    Article  Google Scholar 

  69. van Den Broeke, M. R., and H. Gallée, 1996: Observation and simulation of barrier winds at the western margin of the Greenland ice sheet. Quart. J. Roy. Meteorol. Soc, 122, 1365–1383, https://doi.org/10.1002/qj.49712253407

    Article  Google Scholar 

  70. van Den Broeke, M. R., and N. P. M. van Lipzig, 2003: Factors controlling the near-surface wind field in Antarctica. Mon. Wea. Rev., 131, 733–743, https://doi.org/10.1175/1520-0493(2003)131<0733:FCTNSW>2.0.CO;2

    Article  Google Scholar 

  71. van Den Broeke, M., G. König-Langlo, G. Picard, P. Kuipers Mun-neke, and J. Lenaerts, 2010: Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica. Antarctic Science, 22, 87–96, https://doi.org/10.1017/S0954102009990538

    Article  Google Scholar 

  72. van Lipzig, N. P. M., and M. R. van den Broeke, 2002: A model study on the relation between atmospheric boundary-layer dynamics and poleward atmospheric moisture transport in Antarctica. Tellus A, 54, 497–511, https://doi.org/10.1034/j.1600-0870.2002.201404.x

    Article  Google Scholar 

  73. van Wessem, J. M., C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, A. J. Cook, L. H. van Ulft, and E. van Meijgaard, 2015: Temperature and wind climate of the antarctic peninsula as simulated by a high-resolution regional atmospheric climate model. J. Climate, 28, 7306–7326, https://doi.org/10.1175/JCLI-D-15-0060.1

    Article  Google Scholar 

  74. Vignon, É., O. Traullé, and A. Berne, 2019: On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica. Atmospheric Chemistry and Physics, 19, 4659–4683, https://doi.org/10.5194/acp-19-4659-2019

    Article  Google Scholar 

  75. Vömel, H., D. E. David, and K. Smith, 2007: Accuracy of tropo-spheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J. Geophys. Res, 12, D08305, https://doi.org/10.1029/2006JD007224

    Google Scholar 

  76. Wille, J. D., V. Favier, A. Dufour, I. V. Gorodetskaya, J. Turner, J. C. Agosta, and F. Codron, 2019: West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12, 911–916, https://doi.org/10.1038/s41561-019-0460-1

    Article  Google Scholar 

  77. WMO, 2011a: Guide to climatological practices (WMO-100). World Meteorological Organization, Geneva. [Available from https://public.wmo.int/en/resources/library/guide-climatological-practices-wmo-100]

    Google Scholar 

  78. WMO, 2011b: Manual on Codes-International Codes, Volume I.1, Annex II to the WMO Technical Regulations: Part A—Alphanumeric Codes, WMO No. 306. World Meteorological Organisation, Geneva. [Available from https://library.wmo.int/index.php?lvl=notice_display&id13617#.XmX-cAPmj7wA]

    Google Scholar 

  79. Yamada, K., and N. Hirasawa, 2018: Analysis of a record-breaking strong wind event at Syowa Station in January 2015. J. Geophys. Res, 123, 13 643–13 657, https://doi.org/10.1029/2018JD028877

    Google Scholar 

  80. Yamanouchi, T., M. Fukuda, H. Ogihara, K. Kawashima, and M. Doi, 2020: Meteorological synoptical observations from station Syowa, 1994-01 to 2019-01, reference list of 300 datasets. PANGAEA. Available from https://doi.pangaea.de/10.1594/PANGAEA.911265

    Google Scholar 

  81. Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev, 126, 725–735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

This is a contribution to the Year of Polar Prediction (YOPP), a flagship activity of the Polar Prediction Project (PPP) initiated by the World Weather Research Programme (WWRP) of the World Meteorological Organisation (WMO). We acknowledge the WMO WWRP for its role in coordinating this international research activity. We thank personnel and National Antarctic programs of Germany and Japan carrying out meteorological measurements at Neumayer and Syowa stations. We thank Steve COLWELL for providing the Antarctic YOPP radiosonde data archive. Special thanks to Kirstin WERNER, director of the International Coordination Office for Polar Prediction, Alfred WEGENER Institute, for her continuous support regarding YOPP activities. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website (http:// www.ready.noaa.gov) used in this publication. I.V.G. thanks FCT/ MCTES for the financial support to CESAM (UID/AMB/ 50017/2019) through national funds and FCT grant CIRCNA/CAC/ 0273/2019. NH thanks National Institute of Polar Research (NIPR) Project Research No. KP302. The authors are grateful to the journal editorial team and two anonymous reviewers for their useful and constructive comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Irina V. Gorodetskaya.

Additional information

Article Highlights:

• Atmospheric river signatures are prominent in vertical profiles at the East Antarctic coast as shown by radiosonde observations and reanalysis data.

• Enhanced moisture transport is driven by the low-level jet and humidity maximum, which show decoupling at the Antarctic coast.

• ERA5 is better at representing atmospheric rivers compared to ERA-Interim at Neumayer, while both underestimate atmospheric-river moisture transport at Syowa.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm-ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorodetskaya, I.V., Silva, T., Schmithüsen, H. et al. Atmospheric River Signatures in Radiosonde Profiles and Reanalyses at the Dronning Maud Land Coast, East Antarctica. Adv. Atmos. Sci. 37, 455–476 (2020). https://doi.org/10.1007/s00376-020-9221-8

Download citation

Key words

  • tarctica
  • moisture transport
  • radiosonde observations
  • YOPP-SOP-SH
  • reanalysis

关键词

  • 南极洲
  • 水汽输送
  • 探空观测
  • YOPP-SOP-SH
  • 再分析数据

翻译

  • 李熙晨