Morphological Characteristics of Precipitation Areas over the Tibetan Plateau Measured by TRMM PR

Abstract

The multidimensional morphological characteristics (including scale, horizontal shape and 3D morphology) of precipitation areas over the Tibetan Plateau in summer were studied using 15 years (1998–2012) of observational data from the precipitation radar onboard the Tropical Rainfall Measuring Mission satellite. As the scale of the precipitation area increased from 20 to 150 km, the near-surface rain rate (RRav) of the precipitation area increased by up to 78% (from ∼1.12 to ∼2 mm h−1). Linear precipitation areas had the lowest median RRav (∼1 mm h−1 over the eastern Tibetan Plateau), whereas square-shaped precipitation areas had the highest median RRav (∼1.58 mm h−1 over the eastern Tibetan Plateau). The 3D morphology was defined as the ratio of the average vertical scale to the average horizontal scale, where a large value corresponds to thin and tall, and a small value corresponds to plump and short. Thin-and-tall precipitation areas and plump-and-short precipitation areas had a greater median RRav, whereas the precipitation areas with a moderate 3D morphology had the lowest median RRav. The vertical structure of the precipitation-area reflectivity was sensitive to both size and 3D morphology, but was not sensitive to the horizontal shape. The relationship between RRav and the morphological characteristics was most significant over the southern slopes of the Tanggula Mountains and the Tibetan Plateau east of 100°E. The morphological characteristics of precipitation areas are therefore closely related to the intensity of precipitation and could potentially be used to forecast precipitation and verify numerical models.

This is a preview of subscription content, access via your institution.

References

  1. Bhat, G. S., and S. Kumar, 2015: Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. J. Geophys. Res. Atmos., 120, 1710–1722, https://doi.org/10.1002/2014JD022552.

    Article  Google Scholar 

  2. Bookhagen, B., and D. W. Burbank, 2006: Topography, relief, and TRMM — derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, https://doi.org/10.1029/2006GL026037.

    Google Scholar 

  3. Chang, Y., and X. L. Guo, 2016: Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau. Chin. Sci. Bull., 61, 1706–1720, https://doi.org/10.1360/N972015-01292. (in Chinese)

    Article  Google Scholar 

  4. Chen, Q. L., G. L. Gao, Y. Li, H. K. Cai, X. Zhou, and Z. L. Wang, 2019: Main detrainment height of deep convection systems over the Tibetan Plateau and its southern slope. Adv. Atmos. Sci., 36, 1078–1088, https://doi.org/10.1007/s00376-019-9003-3.

    Article  Google Scholar 

  5. Chen, Y. L., Y. F. Fu, T. Xian, and X. Pan, 2017: Characteristics of cloud cluster over the steep southern slopes of the Himalayas observed by CloudSat. International Journal of Climatology, 37, 4043–4052, https://doi.org/10.1002/joc.4992.

    Article  Google Scholar 

  6. Chen, Y. L., A. Q. Zhang, Y. H. Zhang, C. G. Cui, R. Wan, B. Wang, and Y. F. Fu, 2020: A heavy precipitation event in the Yangtze River Basin led by an eastward moving Tibetan Plateau cloud system in the summer of 2016. J. Geophys. Res. Atmos., 125, e2020JD032429, https://doi.org/10.1029/2020JD032429.

    Google Scholar 

  7. Feng, J. M., L. P. Liu, Z. J. Wang, and R. Z. Chu, 2001: Comparison of cloud observed by ground based Doppler radar with TRMM PR in Qinghai-Xizang Plateau, China. Plateau Meteorology, 20, 345–353, https://doi.org/10.3321/j.issn:1000-0534.2001.04.001. (in Chinese with English abstract)

    Google Scholar 

  8. Feng, L., and T. J. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res. Atmos., 117, D20114, https://doi.org/10.1029/2011JD017012.

    Article  Google Scholar 

  9. Fu, Y. F., and G. S. Liu, 2007: Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J. Appl. Meteorol. Climatol., 46, 667–672, https://doi.org/10.1175/JAM2484.1.

    Article  Google Scholar 

  10. Fu, Y. F., G. S. Liu, G. X. Wu, R. C. Yu, Y. P. Xu, Y. Wang, R. Li, and Q. Liu, 2006: Tower mast of precipitation over the central Tibetan Plateau summer. Geophys. Res. Lett., 33, L05802, https://doi.org/10.1029/2005GL024713.

    Google Scholar 

  11. Fu, Y. F., and Coauthors, 2018: Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Climate Dyn., 51, 1971–1989, https://doi.org/10.1007/s00382-017-3992-3.

    Article  Google Scholar 

  12. Fu, Y. F., and Coauthors, 2020a: Fundamental characteristics of tropical rain cell structures as measured by TRMM PR. J. Meteor. Res., 34, 1129–22, https://doi.org/10.1007/s13351-020-0035-5.

    Article  Google Scholar 

  13. Fu, Y. F., and Coauthors, 2020b: Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective. National Science Review, 7, 500–515, https://doi.org/10.1093/nsr/nwz226.

    Article  Google Scholar 

  14. Hamada, A., Y. N. Takayabu, C. T. Liu, and E. J. Zipser, 2015: Weak linkage between the heaviest rainfall and tallest storms. Nature Communications, 6, 6213, https://doi.org/10.1038/ncomms7213.

    Article  Google Scholar 

  15. Houze, R. A., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613–654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.

    Article  Google Scholar 

  16. Hu, L., D. F. Deng, S. T. Gao, and X. D. Xu, 2016: The seasonal variation of Tibetan Convective Systems: Satellite observation. J. Geophys. Res. Atmos., 121, 5512–5525, https://doi.org/10.1002/2015JD024390.

    Article  Google Scholar 

  17. Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. Technol., 15, 809–817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    Article  Google Scholar 

  18. LeMone, M. A., G. M. Barnes, and E. J. Zipser, 1984: Momentum flux by lines of cumulonimbus over the tropical oceans. J. Atmos. Sci., 41, 1914–1932, https://doi.org/10.1175/1520-0469(1984)041<1914:MFBLOC>2.0.CO;2.

    Article  Google Scholar 

  19. Li, R., W. C. Shao, J. C. Guo, Y. F. Fu, Y. Wang, G. S. Liu, R. J. Zhou, and W. Z. Li, 2019: A simplified algorithm to estimate latent heating rate using vertical rainfall profiles over the Tibetan Plateau. J. Geophys. Res. Atmos., 124, 942–963, https://doi.org/10.1029/2018JD029297.

    Article  Google Scholar 

  20. Lin, C. G., D. L. Chen, K. Yang, and T. H. Qu, 2018: Impact of model resolution on simulating the water vapor transport through the central Himalayas: Implication for models’ wet bias over the Tibetan Plateau. Climate Dyn., 51, 3195–3207, https://doi.org/10.1007/s00382-018-4074-x.

    Article  Google Scholar 

  21. Liu, C. T., and E. Zipser, 2013: Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res. Atmos., 118, 453–466, https://doi.org/10.1029/2012JD018409.

    Article  Google Scholar 

  22. Liu, C. T., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteorol. Climatol., 47, 2712–2728, https://doi.org/10.1155/2008JAMC1890.1.

    Article  Google Scholar 

  23. Liu, L. P., J. F. Zheng, Z. Ruan, Z. H. Cui, Z. Q. Hu, S. H. Wu, G. Y. Dai, and Y. H. Wu, 2015: Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J. Meteor. Res., 29, 546–561, https://doi.org/10.1007/s13551-015-4208-6.

    Article  Google Scholar 

  24. Loehrer, S. M., and R. H. Johnson, 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123, 600–621, https://doi.org/10.1175/1520-0493(1995)123<0600:SPAPLC>2.0.CO;2.

    Article  Google Scholar 

  25. Luo, Y. L., R. H. Zhang, W. M. Qian, Z. Z. Lou, and X. Hu, 2011: Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164–2177, https://doi.org/10.1175/2010JCLI4032.1.

    Article  Google Scholar 

  26. McMurdie, L. A., A. K. Rowe, R. A. Houze Jr., S. R. Brodzik, J. P. Zagrodnik, and T. M. Schuldt, 2018: Terrain-enhanced precipitation processes above the melting layer: Results from OLYMPEX. J. Geophys. Res. Atmos., 123, 12194–12209, https://doi.org/10.1029/2018JD029161.

    Article  Google Scholar 

  27. Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 2702–2721, https://doi.org/10.1175/MWR3200.1.

    Article  Google Scholar 

  28. Qie, X. S., X. K. Wu, T. Yuan, J. C. Bian, and D. R. Lu, 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian monsoon region based on TRMM data. J. Climate, 27, 6612–6626, https://doi.org/10.1175/JCLI-D-14-00076.1.

    Article  Google Scholar 

  29. Schumacher, C., and R. A. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 1739–1756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    Article  Google Scholar 

  30. Su, Z., P. de Rosnay, J. Wen, L. Wang, and Y. Zeng, 2013: Evaluation of ECMWF’s soil moisture analyses using observations on the Tibetan Plateau. J. Geophys. Res. Atmos., 118, 5304–5318, https://doi.org/10.1002/jgrd.50468.

    Article  Google Scholar 

  31. Tao, S. Y., and Y. H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23–30, https://doi.org/10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    Article  Google Scholar 

  32. Wang, H., and X. L. Guo, 2019: Comparative analyses of vertical structure of deep convective clouds retrieved from satellites and ground-based radars at Naqu over the Tibetan Plateau. J. Meteor. Res., 33, 446–462, https://doi.org/10.1007/s13351-019-8612-1.

    Article  Google Scholar 

  33. Wang, Y., and Coauthors, 2017: Evaluation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the southern Tibetan Plateau. J. Climate, 30, 5699–5713, https://doi.org/10.1175/JCLI-D-16-0630.1.

    Article  Google Scholar 

  34. Wang, Y., and Coauthors, 2020: Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya. Climate. Dyn., 54, 1729–1740, https://doi.org/10.1007/s00382-019-05080-w.

    Article  Google Scholar 

  35. Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8, 770–789, https://doi.org/10.1175/JHM609.1.

    Article  Google Scholar 

  36. Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, https://doi.org/10.1038/srep00404.

    Article  Google Scholar 

  37. Wu, G. X., and Coauthors, 2015: Tibetan plateau climate dynamics: Recent research progress and outlook. National Science Review, 2, 100–116, https://doi.org/10.1093/nsr/nwu045.

    Article  Google Scholar 

  38. Xu, W. X.., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 1577–1592, https://doi.org/10.1175/MWR-D-12-00177.1.

    Article  Google Scholar 

  39. Xu, W. X., and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448–465, https://doi.org/10.1175/2010JCLI3719.1.

    Article  Google Scholar 

  40. Xu, X. D., C. G. Lu, X. H. Shi, and S. T. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867.

    Article  Google Scholar 

  41. Yan, Y. F., and Y. M. Liu, 2019: Vertical structures of convective and stratiform clouds in boreal summer over the Tibetan Plateau and its neighboring regions. Adv. Atmos. Sci., 36, 1089–1102, https://doi.org/10.1007/s00376-019-8229-4.

    Article  Google Scholar 

  42. Yan, Y. F., Y. M. Liu, and J. H. Lu, 2016: Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res. Atmos., 121, 5864–5877, https://doi.org/10.1002/2015JD024591.

    Article  Google Scholar 

  43. Yang, K., X. F. Guo, and B. Y. Wu, 2011: Recent trends in surface sensible heat flux on the Tibetan Plateau. Science China Earth Sciences, 54, 19–28, https://doi.org/10.1007/s11430-010-4036-6.

    Article  Google Scholar 

  44. Yatagai, A., and H. Kawamoto, 2008: Quantitative estimation of orographic precipitation over the Himalayas by using TRMM/PR and a dense network of rain gauges. Proc. Volume 7148, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions II, Noumea, New Caledonia, SPIE, 71480C, https://doi.org/10.1117/12.811943.

    Google Scholar 

  45. Yue, Z. G., X. Yu, G. H. Liu, J. Dai, Y. N. Zhu, X. H. Xu, Y. Hui, and C. Chen, 2019: Microphysical properties of convective clouds in summer over the Tibetan Plateau from SNPP/VIIRS satellite data. J. Meteor. Res., 33, 433–445, https://doi.org/10.1007/s13351-019-8608-x.

    Article  Google Scholar 

  46. Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941–1963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    Article  Google Scholar 

  47. Zagrodnik, J. P., L. A. McMurdie, R. A. Houze Jr., and S. Tanelli, 2019: Vertical structure and microphysical characteristics of frontal systems passing over a three-dimensional coastal mountain range. J. Atmos. Sci., 76, 1521–1546, https://doi.org/10.1175/JAS-D-18-0279.1.

    Article  Google Scholar 

  48. Zhang, A. Q., Y. F. Fu, Y. L. Chen, G. S. Liu, and X. D. Zhang, 2018: Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations. Atmos. Res., 202, 10–22, https://doi.org/10.1016/j.atmosres.2017.11.001.

    Article  Google Scholar 

  49. Zhao, P., and Coauthors, 2018: The third atmospheric scientific experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Amer. Meteor. Soc., 99, 757–776, https://doi.org/10.1175/BAMSD-16-0050.1.

    Article  Google Scholar 

  50. Zhao, P., and Coauthors, 2019a: The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The third Tibetan Plateau atmospheric science experiment. J. Meteor. Res., 33, 375–399, https://doi.org/10.1007/s13351-019-8602-3.

    Article  Google Scholar 

  51. Zhao, Y., X. D. Xu, Z. Ruan, B. Chen, and F. Wang, 2019b: Precursory strong-signal characteristics of the convective clouds of the Central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin. Meteorol. Atmos. Phys., 131, 697–712, https://doi.org/10.1007/s00703-018-0597-2.

    Article  Google Scholar 

  52. Zhou, X. J., P. Zhao, J. M. Chen, L. X. Chen, and W. L. Li, 2009: Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Science in China Series D: Earth Sciences, 52, 1679–1693, https://doi.org/10.1007/s11430-009-0194-9.

    Article  Google Scholar 

  53. Zhu, X. Y., Y. M. Liu, and G. X. Wu, 2012: An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Science China Earth Sciences, 55, 779–786, https://doi.org/10.1007/s11430-012-4379-2.

    Article  Google Scholar 

  54. Zhuo, H., Y. Liu, and J. Jin, 2016: Improvement of land surface temperature simulation over the Tibetan plateau and the associated impact on circulation in East Asia. Atmos. Sci. Lett., 17, 162–168, https://doi.org/10.1002/asl.638.

    Article  Google Scholar 

Download references

Acknowledgements

The data can be obtained from the websites https://pmm.nasa.gov/data-access/downloads/trmm for TRMM PR. This research was supported by the National Natural Science Foundation of China (Grant Nos. 91837310, 41675041, 41620104009 and 41675043), the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Grant No. 2019QZKK0104), Fundamental Research Funds for the Guangzhou Science and Technology Plan project (Grant No. 201903010036), the Fundamental Research Funds for the Central Universities from Sun Yat-Sen University (Grant No. 20lgpy19), the China Postdoctoral Science Foundation (Grant No. 2020M672943), and the Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies (Grant No. 2020B1212060025).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunfei Fu.

Additional information

Article Highlights

• Morphological characteristics of precipitation areas were constructed and analyzed based on 15 years of TRMM PR observations.

• Linear precipitation areas had the lowest rain rate, whereas square-shaped precipitation areas had the highest rain rate.

• The vertical structure of the precipitation-area reflectivity was sensitive to both size and 3D morphology.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, A., Fu, Y. et al. Morphological Characteristics of Precipitation Areas over the Tibetan Plateau Measured by TRMM PR. Adv. Atmos. Sci. (2021). https://doi.org/10.1007/s00376-020-0233-1

Download citation

Key words

  • precipitation areas
  • morphological characteristics
  • Tibetan Plateau
  • TRMM PR