Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 1, pp 15–28 | Cite as

Role of the Nocturnal Low-level Jet in the Formation of the Morning Precipitation Peak over the Dabie Mountains

  • Peiling Fu
  • Kefeng Zhu
  • Kun Zhao
  • Bowen Zhou
  • Ming Xue
Original Paper
  • 51 Downloads

Abstract

The diurnal variation of precipitation over the Dabie Mountains (DBM) in eastern China during the 2013 mei-yu season is investigated with forecasts of a regional convection-permitting model. Simulated precipitation is verified against surface rain-gauge observations. The observed morning precipitation peak on the windward (relative to the prevailing synoptic-scale wind) side of the DBM is reproduced with good spatial and temporal accuracy. The interaction between the DBM and a nocturnal boundary layer low-level jet (BLJ) due to the inertial oscillation mechanism is shown to be responsible for this precipitation peak. The BLJ is aligned with the lower-level southwesterly synoptic-scale flow that carries abundant moisture. The BLJ core is established at around 0200 LST upwind of the mountains. It moves towards the DBM and reaches maximum intensity at about 70 km ahead of the mountains. When the BLJ impinges upon the windward side of the DBM in the early morning, mechanical lifting of moist air leads to condensation and subsequent precipitation.

Key words

nocturnal boundary layer low-level jet diurnal variation precipitation Dabie Mountains mei-yu season 

摘要

大别山地区是江淮流域一个暴雨中心, 降水日变化呈现典型的双峰结构, 其中清晨降水峰值的形成机制原因较为复杂, 过去存在较大的争议. 本文利用南京大学夏季实时运行的4km WRF, 研究了梅雨期间大别山地区清晨峰值降水的形成机制, 模式预报很好地再现了大别山地区的降水时空分布和日变化特征. 研究表明, 大别山迎风坡区域夜间边界层急流存在明显的惯性振荡, 凌晨5点左右惯性振荡方向与盛行风方向重合, 夜间边界层急流强度达到最强; 当低层暖湿气流输送到大别山地区时, 地形抬升作用进一步增强了降水. 夜间边界层急流增强和大别山地形的抬升作用是该地区清晨降水峰值形成的主要机制.

关键词

夜间边界层 低空急流 日变化 降水 大别山 梅雨 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was primarily supported by the Special Foundation of the China Meteorological Administration (Grant No. GYHY201506006). The work was also supported by the National Science Foundation of China (Grant Nos. 41405100, 41322032 and 41275031).

References

  1. Bao, X. H., F. Q. Zhang, and J. H. Sun, 2011: Diurnal variations of warm-season precipitation East of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790–2810, https://doi.org/10.1175/MWR-D-11-00006.1.CrossRefGoogle Scholar
  2. Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283–290.CrossRefGoogle Scholar
  3. Chen, G. X., W. M. Sha, and T. Iwasaki, 2009: Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality. J. Geophys. Res., 114, D13103, https://doi.org/10.1029/2008JD011103.CrossRefGoogle Scholar
  4. Chen, H. M., R. C. Yu, J. Li, W. H. Yuan, and T. J. Zhou, 2010: Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River Valley. J. Climate, 23, 905–917, https://doi.org/10.1175/2009JCLI3187.1.CrossRefGoogle Scholar
  5. Chen, Y.-L., X. A. Chen, and Y.-X. Zhang, 1994: A diagnostic study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 122, 2257–2284, https://doi.org/10.1175/1520-0493(1994)122<2257:ADSOTL>2.0.CO;2.CrossRefGoogle Scholar
  6. Chen, Y.-L., and J. Li, 1995: Large-scale conditions favorable for the development of heavy rainfall during TAMEX IOP 3. Mon. Wea. Rev., 123, 2978–3002, https://doi.org/10.1175/1520-0493(1995)123<2978:LSCFFT>2.0.CO;2.CrossRefGoogle Scholar
  7. Chen, Y.-L., X. A. Chen, S. Chen, and Y.-H. Kuo, 1997: A numerical study of the low-level Jet during TAMEX IOP 5. Mon. Wea. Rev., 125, 2583–2604, https://doi.org/10.1175/1520-0493(1997)125<2583:ANSOTL>2.0.CO;2.CrossRefGoogle Scholar
  8. Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. Mc-Caa, D. L. Williamson, J. T. Kiehl, and B. Briegleb, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Technical Note NCAR/TN-464+STR.Google Scholar
  9. Dai, A. G., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 6377–6402, https://doi.org/10.1029/98JD02720.CrossRefGoogle Scholar
  10. Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373–396, https://doi.org/10.2151/jmsj1965.70.1B373.CrossRefGoogle Scholar
  11. Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142,  https://doi.org/10.1007/s00703-005-0125-z.CrossRefGoogle Scholar
  12. Du, Y., Q. H. Zhang, Y. Ying, and Y. M. Yang, 2012: Characteristics of low-level jets in Shanghai during the 2008–2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan, 90, 891–903, https://doi.org/10.2151/jmsj.2012-603.CrossRefGoogle Scholar
  13. Du, Y., Q. H. Zhang, Y. L. Chen, Y. Y. Zhao, and X. Wang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during Early summer. J. Climate, 27, 5747–5767, https://doi.org/10.1175/JCLI-D-13-00571.1.CrossRefGoogle Scholar
  14. Du, Y., R. Rotunno, and Q. H. Zhang, 2015: Analysis of WRFsimulated diurnal boundary layer winds in eastern China using a simple 1D model. J. Atmos. Sci., 72, 714–727, https://doi.org/10.1175/JAS-D-14-0186.1.CrossRefGoogle Scholar
  15. Geng, B., H. Yamada, K. K. Reddy, H. Uyeda, and Y. Fujiyoshi, 2009: Mesoscale development and along-frontal variation of a Meiyu/Baiu front and precipitation observed in the downstream region of the Yangtze River. J. Meteor. Soc. Japan, 87, 423–457, https://doi.org/10.2151/jmsj.87.423.CrossRefGoogle Scholar
  16. He, Z. W., Q. H. Zhang, and J. Sun, 2016: The contribution of mesoscale convective systems to intense hourly precipitation events during the warm seasons over central East China. Adv. Atmos. Sci., 33, 1233–1239,  https://doi.org/10.1007/s00376-016-6034-x.CrossRefGoogle Scholar
  17. He, Z. W., Q. H. Zhang, L. Q. Bai, and Z. Y. Meng, 2017: Characteristics of mesoscale convective systems in central East China and their reliance on atmospheric circulation patterns. International Journal of Climatology, 37, 3276–3290, https://doi.org/10.1002/joc.4917.CrossRefGoogle Scholar
  18. Li, J., Y.-L. Chen, and W.-C. Lee, 1997: Analysis of a heavy rainfall event during TAMEX. Mon. Wea. Rev., 125, 1060–1082, https://doi.org/10.1175/1520-0493(1997)125<1060: AOAHRE>2.0.CO;2.CrossRefGoogle Scholar
  19. Luo, Y. L., W. M. Qian, R. H. Zhang, and D.-L. Zhang, 2013a: Gridded hourly precipitation analysis from high-density rain gauge network over the Yangtze–Huai Rivers Basin during the 2007 Mei-Yu season and comparison with CMORPH. Journal of Hydrometeorology, 14, 1243–1258, https://doi.org/10.1175/JHM-D-12-0133.1.CrossRefGoogle Scholar
  20. Luo, Y. L., H. Wang, R. H. Zhang, W. M. Qian, and Z. Z. Luo, 2013b: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River Basin. J. Climate, 26, 110–132, https://doi.org/10.1175/JCLI-D-12-00100.1.CrossRefGoogle Scholar
  21. Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, 2002: Does increasing horizontal resolution produce more skillful forecasts?: The results of two years of real-time numerical weather prediction over the Pacific Northwest. Bull. Amer. Meteor. Soc., 83, 407–430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.CrossRefGoogle Scholar
  22. Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665–1677, https://doi.org/10.1175/JAS3446.1.Google Scholar
  23. Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 1456–1475, https://doi.org/10.1175/1520-0442-16.10.1456.CrossRefGoogle Scholar
  24. Pleim, J. E., 2006: A simple, efficient solution of flux profile relationships in the atmospheric surface layer. Journal of Applied Meteorology and Climatology, 45, 341–347, https://doi.org/10.1175/JAM2339.1.CrossRefGoogle Scholar
  25. Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. Journal of Applied Meteorology and Climatology, 46, 1383–1395, https://doi.org/10.1175/JAM2539.1.Google Scholar
  26. Skamarock, W. C., and Coauthors, 2005: A Description of the Advanced Research WRF Version 2. NCAR Technical Note NCAR/TN-475+STR.Google Scholar
  27. Sun, J. H., and F. Q. Zhang, 2012: Impacts of mountain–plains solenoid on diurnal variations of rainfalls along the Mei-Yu front over the East China plains. Mon. Wea. Rev., 140, 379–397, https://doi.org/10.1175/MWR-D-11-00041.1.CrossRefGoogle Scholar
  28. Van De Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, P. Baas, F. C. Bosveld, and A. A. M. Holtslag, 2010: A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci., 67, 2679–2689, https://doi.org/10.1175/2010JAS3289.1.CrossRefGoogle Scholar
  29. Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406–419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.CrossRefGoogle Scholar
  30. Wang, C.-C., G. T.-J. Chen, and R. E. Carbone, 2005: Variability of warm-season cloud episodes over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev, 133, 1478–1500, https://doi.org/10.1175/MWR2928.1.CrossRefGoogle Scholar
  31. Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527–548, https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.CrossRefGoogle Scholar
  32. Xu, W. X., and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and East of the Eastern Tibetan Plateau. J. Climate, 24, 448–465, https://doi.org/10.1175/2010JCLI3719.1.CrossRefGoogle Scholar
  33. Yamada, H., B. Geng, H. Uyeda, and K. Tsuboki, 2007: Thermodynamic impact of the heated landmass on the nocturnal evolution of a cloud cluster over a Meiyu-Baiu front. J. Meteor. Soc. Japan, 85, 663–685, https://doi.org/10.2151/jmsj.85.663.CrossRefGoogle Scholar
  34. Yu, R. C., T. J. Zhou, A. Y. Xiong, Y. J. Zhu, and J. M. Li, 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, https://doi.org/10.1029/2006GL028129.Google Scholar
  35. Yuan, W. H., R. C. Yu, H. M. Chen, J. Li, and M. H. Zhang, 2010: Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China. J. Climate, 23, 6684–6695, https://doi.org/10.1175/2010JCLI3805.1.CrossRefGoogle Scholar
  36. Yuan, W. H., R. C. Yu, M. H. Zhang, W. Y. Lin, H. M. Chen, and J. Li, 2012: Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 3307–3320, https://doi.org/10.1175/JCLI-D-11-00288.1.CrossRefGoogle Scholar
  37. Yuan, W. H., R. C. Yu, M. H. Zhang, W. Y. Lin, J. Li, and Y. F. Fu, 2013: Diurnal cycle of summer precipitation over subtropical East Asia in CAM5. J. Climate, 26, 3159–3172, https://doi.org/10.1175/JCLI-D-12-00119.1.CrossRefGoogle Scholar
  38. Zheng, Y. G., M. Xue, B. Li, J. Chen, and Z. Y. Tao, 2016: Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on nationallevel hourly rain gauge data. Adv. Atmos. Sci., 33, 1218–1232,  https://doi.org/10.1007/s00376-016-6128-5.CrossRefGoogle Scholar
  39. Zhu, K. F., and M. Xue, 2016: Evaluation of WRF-based convection-permitting multi-physics ensemble forecasts over China for an extreme rainfall event on 21 July 2012 in Beijing. Adv. Atmos. Sci., 33, 1240–1258,  https://doi.org/10.1007/s00376-016-6202-z.CrossRefGoogle Scholar
  40. Zhu, K. F., and Coauthors, 2018: Evaluation of real-time convection-permitting precipitation forecasts in China during the 2013–2014 summer season. J. Geophys. Res., 123, 1037–1064, https://doi.org/10.1002/2017JD027445.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Peiling Fu
    • 1
    • 2
  • Kefeng Zhu
    • 1
  • Kun Zhao
    • 1
  • Bowen Zhou
    • 1
  • Ming Xue
    • 1
    • 3
  1. 1.Key Laboratory of Mesoscale Severe Weather/Ministry of Education and School of Atmospheric SciencesNanjing UniversityNanjingChina
  2. 2.Guangzhou Meteorological ObservatoryGuangzhouChina
  3. 3.Center for Analysis and Prediction of StormsUniversity of OklahomaNormanUSA

Personalised recommendations