Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 2, pp 189–205 | Cite as

Satellite-based Observational Study of the Tibetan Plateau Vortex: Features of Deep Convective Cloud Tops

  • Yi-Xuan ShouEmail author
  • Feng Lu
  • Hui Liu
  • Peng Cui
  • Shaowen Shou
  • Jian Liu
Original Paper
  • 47 Downloads

Abstract

In this study, an east-moving Tibetan Plateau vortex (TPV) is analyzed by using the ERA-5 reanalysis and multi-source satellite data, including FengYun-2E, Aqua/MODIS and CALIPSO. The objective is to demonstrate: (i) the usefulness of multi-spectral satellite observations in understanding the evolution of a TPV and the associated rainfall, and (ii) the potential significance of cloud-top quantitative information in improving Southwest China weather forecasts. Results in this study show that the heavy rainfall is caused by the coupling of an east-moving TPV and some low-level weather systems [a Plateau shear line and a Southwest Vortex (SWV)], wherein the TPV is a key component. During the TPV’s life cycle, the rainfall and vortex intensity maintain a significant positive correlation with the convective cloud-top fraction and height within a 2.5◦ radius away from its center. Moreover, its growth is found to be quite sensitive to the cloud phases and particle sizes. In the mature stage when the TPV is coupled with an SWV, an increase of small ice crystal particles and appearance of ring- and U/V-shaped cold cloud-top structures can be seen as the signature of a stronger convection and rainfall enhancement within the TPV. A tropopause folding caused by ageostrophic flows at the upper level may be a key factor in the formation of ring-shaped and U/V-shaped cloud-top structures. Based on these results, we believe that the supplementary quantitative information of an east-moving TPV cloud top collected by multi-spectral satellite observations could help to improve Southwest China short-range/nowcasting weather forecasts.

Key words

Tibetan Plateau vortex multi-spectral satellite observations short-range/nowcasting weather forecasts cold U/V-shaped cloud top tropopause folding 

摘 要

本文利用FY-2E, Aqua/MODIS和CALIPSO多源卫星资料, 并结合ECMWF最新一代高时空分辨率ERA-5再分析资料, 对一个东移的高原低涡(简称TPV)进行了分析, 以期表明: (i) 卫星观测的多光谱资料有助于理解TPV及其降水的演变; (ii)利用云顶上提取的定量信息对提高中国西南地区短临天气预报具有潜在的意义. 结果表明, 本例中强降水是东移的TPV系统与低层天气系统(切变线和西南涡)发生耦合引起的, 其中TPV起到了关键作用. 在TPV发展的各个阶段中, TPV的强度及降水不仅与以高原低涡中心为圆点半径为2.5°(纬度)范围内的对流云顶面积与总面积的比值, 还与云顶高度, 具有显著的正相关关系; 而且它对云顶相态和粒子大小变化也非常敏感. 在TPV成熟阶段, 当它与低空西南涡叠加而强烈发展时, 出现的云顶小冰晶粒子增加以及环形和“U/V”字形的冷云顶结构, 可以看作TPV内部对流加强和降水增幅的信号. 从动力机制上看, 由高层非地转平衡气流引起的对流层顶折叠可能是引起环形和“U/V”字形的冷云顶结构的一个关键因素. 基于这些结果, 我们认为补充基于卫星多光谱资料提取的东移TPV的云顶定量信息可以用于提高和改善中国西南地区短期天气预报.

关键词

高原低涡 卫星多光谱资料 短期天气预报 环形冷云 “U/V”字形冷云 对流层顶折叠 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. 41575048 and 91637105). The authors wish to thank Academician Jianmin XU, of the National Satellite Meteorological Center, for giving constructive suggestions during the paper’s revision, as well as the anonymous reviewers and editors for their inspirational comments and suggestions on this paper.

Supplementary material

376_2018_8049_MOESM1_ESM.pdf (946 kb)
Electronic Supplementary Material to: Satellite-based Observational Study of the Tibetan Plateau Vortex: Features of Deep Convective Cloud Tops*

References

  1. Adler, R. F., and D. D. Fenn, 1979: Thunderstorm intensity as determined from satellite data. J. Appl. Meteor., 18, 502–517, https://doi.org/10.1175/1520-0450(1979)018<0502:TIADFS> 2.0.CO;2.CrossRefGoogle Scholar
  2. Adler, R. F., M. J. Markusa, D. D. Fennc, G. Szejwacha, and W. E. Shenka, 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Climate Appl. Meteor., 22, 579–593, https://doi.org/10.1175/1520-0450(1983)022<0579:TTSOBA>2.0.CO;2.CrossRefGoogle Scholar
  3. Bedka, K. M., and J. R. Mecikalski, 2005: Application of satellitederived atmospheric motion vectors for estimating mesoscale flows. J. Appl. Meteor., 44, 1761–1772, https://doi.org/10.1175/JAM2264.1.CrossRefGoogle Scholar
  4. Chen, G., and G. P. Li, 2014: Dynamic and numerical study of waves in the Tibetan Plateau Vortex. Adv. Atmos. Sci., 31(1), 131–138, https://doi.org/10.1007/s00376-013-1035-5.CrossRefGoogle Scholar
  5. Chen, Z. M., 1988: The dynamic analyses of the effect of largescale environment flow fields and cumulus on the development of sub-synoptic scale southwest vortex. Plateau Meteorology, 7(1), 27–38. (in Chinese)Google Scholar
  6. Chen, Z. M., M. L. Xu, W. B. Min, and Q. Miao, 2003: Relationship between abnormal activites of Southwest Vortex and heavy rain the upper reach of Yangtze River during Summer o1998. Plateau Meteorology, 22(2), 162–167, https://doi. org/10.3321/j.issn:1000-0534.2003.02.010. (in Chinese)Google Scholar
  7. Chen, Z. M., W. B. Min, Q Miao, and G. B. He, 2004: A case study on coupling interaction between plateau and southwest vortexes. Plateau Meteorology, 23, 75–80, https://doi.org/10.3321/j.issn:1000-0534.2004.01.011. (in Chinese)Google Scholar
  8. Cheng, X. L., Y. Q. Li, and L. Xu, 2016: An analysis of an extreme rainstorm caused by the interaction of the Tibetan Plateau vortex and the Southwest China vortex from an intensive observation. Meteor. Atmos. Phys., 128, 373–399, https://doi.org/10.1007/s00703-015-0420-2.CrossRefGoogle Scholar
  9. DeMaria, M., and J. Kaplan, 1994: A Statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic Basin. Wea. Forecasting, 9, 209–220, https://doi.org/10.1175/1520-0434 (1994)009<0209:ASHIPS>2.0.CO;2.CrossRefGoogle Scholar
  10. DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the statistical hurricane intensity prediction scheme (SHIPS). Wea. Forecasting, 20, 531–543, https://doi.org/10.1175/WAF862.1.CrossRefGoogle Scholar
  11. Feidas, H., 2003: A software tool for monitoring the features of convective cloud systems with the use of Meteosat images. Environmental Modeling & Software, 18, 1–12, https://doi. org/10.1016/S1364-8152(02)00041-5.CrossRefGoogle Scholar
  12. Fitzpatrick, P. J., 1997: Understanding and forecasting tropical cyclone intensity change with the Typhoon Intensity Prediction Scheme (TIPS). Wea. Forecasting, 12, 826–846, https://doi. org/10.1175/1520-0434(1997)012<0826:UAFTCI>2.0.CO;2.CrossRefGoogle Scholar
  13. Fu, S.-M., W.-L. Li, J.-H. Sun, J.-P. Zhang, and Y.-C. Zhang, 2015: Universal evolution mechanisms and energy conversion characteristics of long-lived mesoscale vortices over the Sichuan Basin. Atmospheric Science Letters, 16, 127–134, https://doi.org/10.1002/asl2.533.CrossRefGoogle Scholar
  14. Fujita, T. T., 1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60, 355–368, https://doi.org/10.2151/jmsj1965.60.1 355.CrossRefGoogle Scholar
  15. Heymsfield, G. M., G. Szejwach, S. Schotz, and R. H. Blackmer Jr., 1983: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. II: Proposed explanation of “V” pattern and internal warm region in infrared observations. J. Atmos. Sci., 40, 1756–1767, https://doi.org/10.1175/1520-0469 (1983)040<1756:ULSOOT>2.0.CO;2.CrossRefGoogle Scholar
  16. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, https://doi.org/10.1002/qj.49711147002.CrossRefGoogle Scholar
  17. Huang, C. H., and G. P. Li, 2009: A case study of plateau vortex moving east ward with heavy rainfalls based on helicity and non-geostrophic wet Q-vector. Plateau Meteorology, 28(2), 319–326. (in Chinese)Google Scholar
  18. Huang, C. H., G. P. Li, J. L. Niu, F. H. Zhao, H. Zhang, and Y. He, 2015: A 30-year climatology of the moving-out Tibetan Plateau vortex in summer and its influence on the rainfall in China. Journal of Tropical Meteorology, 31, 827–838, https://doi.org/10.16032/j.issn.1004-4965.2015.06.011. (in Chinese)Google Scholar
  19. Hunt, W. H., D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, 2009: CALIPSO Lidar description and performance assessment. J. Atmos. Oceanic Technol., 26, 1214–1228, https://doi.org/10.1175/2009JTECHA1223.1.CrossRefGoogle Scholar
  20. Jiang, L. J., and G. P. Li, 2015: Analysis of heavy precipitation caused by the vortices in the lee of the Tibetan Plateau from TRMM (the Tropical Rainfall Measuring Mission) observations. Proc. Volume 9640, Remote Sensing of Clouds and the Atmosphere XX, Toulouse, France, SPIE, https://doi.org/10.1117/12.2191821.Google Scholar
  21. Jiang, L. J., G. P. Li, X. T. Wang, 2015: Comparative study based on TRMM data of the heavy rainfall caused by the Tibetan Plateau vortex and the southwest vortex. Chinese J. Atmos. Sci., 39(2), 249–259, https://doi.org/10.3878/j.issn.1006-9895.1407.13260. (in Chinese)Google Scholar
  22. Koch, S. E., and Coauthors, 2005: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci., 62, 3885–3908, https://doi.org/10.1175/JAS3574.1.CrossRefGoogle Scholar
  23. Kurino, T., 1997: A satellite infrared technique for estimating “deep/shallow” precipitation. Advances in Space Research, 19, 511–514, https://doi.org/10.1016/S0273-1177(97)00063-X.CrossRefGoogle Scholar
  24. Li, L., R. H. Zhang, and M. Wen, 2014: Diurnal variation in the occurrence frequency of the Tibetan Plateau vortices. Meteor. Atmos. Phys., 125, 135–144, https://doi.org/10.1007/s00703-014-0325-5.CrossRefGoogle Scholar
  25. Li, L., R. H. Zhang, and M. Wen, 2017: Modulation of the atmospheric quasi-biweekly oscillation on the diurnal variation of the occurrence frequency of the Tibetan Plateau vortices. Climate Dyn., 50, 4507–4518, https://doi.org/10.1007/s00382-017-3887-3.CrossRefGoogle Scholar
  26. Li, J. P., S. G. Wang, and G. W. Sun, 2012: Review and prospects of research on low vortex on the Qinghai-Tibetan plateau. Journal of Lanzhou University (Natural Sciences), 48(4), 53–60, 71, https://doi.org/10.3969/j.issn.0455-2059. 2012.04.009. (in Chinese).Google Scholar
  27. Lu, J. H., 1986: The Introduction of Southwest Vortex. China Meteorological Press, 276 pp. (in Chinese)Google Scholar
  28. Luo, S., 1992: The Researches of Several Synoptic Systems of Tibetan Plateau and Nearby Areas. China Meteorological Press, 205 pp. (in Chinese)Google Scholar
  29. Lutz, H.-J., T. Inoue, and J. Schmetz, 2003: Comparison of a splitwindow and a multi-spectral cloud classification for MODIS observations. J. Meteor. Soc. Japan, 81, 623–631, https://doi.org/10.2151/jmsj.81.623.CrossRefGoogle Scholar
  30. Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A.W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 1630–1654, https://doi.org/10.1175/1520-0493(1998)126<1630:LCVOMC>2.0. CO;2.CrossRefGoogle Scholar
  31. Maddox, R., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 1475–1493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.CrossRefGoogle Scholar
  32. McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887–894, https://doi.org/10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.CrossRefGoogle Scholar
  33. Mecikalski, J. R., and Coauthors, 2007: Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence, and volcanic ash. Bull. Amer. Meteor. Soc., 88, 1589–1607, https://doi.org/10.1175/BAMS-88-10-1589.CrossRefGoogle Scholar
  34. Mecikalski, J. R., K. M. Bedka, S. J. Paech, and L. A. Litten, 2008: A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation. Mon. Wea. Rev., 136, 4899–4914. https://doi.org/10.1175/2008MWR2352.1.CrossRefGoogle Scholar
  35. Mecikalski, J. R., D. Rosenfeld, and A. Manzato, 2016: Evaluation of geostationary satellite observations and the development of a 1–2 h prediction model for future storm intensity. J. Geophys. Res., 121, 6374–6392, https://doi.org/10.1002/2016JD024768.Google Scholar
  36. Mills, P. B., and E. G. Astling, 1977: Detection of tropopause penetrations by intense convection with GOES enhanced infrared imagery. Proc. 10th Conf. on Severe Local Storms, Omaha, Amer. Meteor. Soc., 61–64.Google Scholar
  37. Purdom, J. F. W., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 1474–1483, https://doi.org/10.1175/1520-0493(1976)104<1474:SUOHRG>2.0.CO;2.CrossRefGoogle Scholar
  38. Rosenfeld, D., 1997: Comments on “A new look at the Israeli cloud seeding experiments”. J. Appl. Meteor., 36, 260–271, https://doi.org/10.1175/1520-0450(1997)036<0260: COANLA>2.0.CO;2.CrossRefGoogle Scholar
  39. Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 2457–2476, https://doi.org/10.1175/1520-0477(1998)079 <2457:SBIIPF>2.0.CO;2.CrossRefGoogle Scholar
  40. Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with METEOSAT. Advances in Space Research, 19, 433–441, https://doi.org/10.1016/S0273-1177(97)00051-3.CrossRefGoogle Scholar
  41. Schmidt, E. O., R. F. Arduini, B. A. Wielicki, R. S. Stone, and S.-C. Tsay, 1995: Considerations for modeling thin cirrus effects via brightness temperature differences. J. Appl. Meteor., 34, 447–459, https://doi.org/10.1175/1520-0450-34.2.447.CrossRefGoogle Scholar
  42. Setvák, M., K. Bedka, D. T. Lindsey, A. Sokol, Z. Charvát, J. Št’ástka, and P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229–248, https://doi.org/10.1016/j.atmosres.2012.06.020.CrossRefGoogle Scholar
  43. Setvák, M., and Coauthors, 2010: Satellite-observed cold-ringshaped features atop deep convective clouds. Atmos. Res., 97, 80–96, https://doi.org/10.1016/j.atmosres.2010.03.009.CrossRefGoogle Scholar
  44. Shou, S.W., S. S. Li, and X. P. Yao, 2003: Mesoscale Meteorology. China Meteorological Press, 370pp. (in Chinese)Google Scholar
  45. Siewert, C. W., M. Koenig, and J. R. Mecikalski, 2010: Application of Meteosat second generation data towards improving the nowcasting of convective initiation. Meteor. Appl., 17, 442–451, https://doi.org/10.1002/met.176.Google Scholar
  46. Sun, J. H., J. Li, X. Y. Shen, and L. Kang, 2015: Mesoscale system study of extreme rainfall over Sichuan Basin in July 2013. Meteorological Monthly, 41(5), 533–543, https://doi.org/10.7519/j.issn.1000-0526.2015.05.002. (in Chinese)Google Scholar
  47. Tao, S., 1980: Rainstorm in China. Science Press, 225 pp. (in Chinese)Google Scholar
  48. Wang, P. K., 2007: The thermodynamic structure atop a penetrating convective thunderstorm. Atmospheric Research, 83, 254–262, https://doi.org/10.1016/j.atmosres.2005.08.010.CrossRefGoogle Scholar
  49. Wang, P. K., M. Setvák, W. Lyons, W. Schmid, and H. M. Lin, 2009: Further evidences of deep convective vertical transport of water vapor through the tropopause. Atmos. Res., 94, 400–408, https://doi.org/10.1016/j.atmosres.2009.06.018.CrossRefGoogle Scholar
  50. Wang, X. F., Y. S. Liao, A. R. Min, and C. G. Cui, 2007: Characteristics of southwest vortex of influencing “05.06.25” Yangtze River rainstorm. Plateau Meteorology, 26(1), 197–205, https://doi.org/10.3321/j.issn:1000-0534.2007.01. 023. (in Chinese)Google Scholar
  51. Xiang, S. Y., Y. Q. Li, D. Li, and S. Yang, 2013: An analysis of heavy precipitation caused by a retracing plateau vortex based on TRMM data. Meteor. Atmos. Phys., 122, 33–45, https://doi.org/10.1007/s00703-013-0269-1.CrossRefGoogle Scholar
  52. Xu, J. M., Q. Guo, Q. F. Lu, F. Lu, and X. H. Zhang, 2014: Innovations in the data processing algorithm for Chinese FY meteorological satellites. Journal of Meteorological Research, 28(5), 948–946, https://doi.org/10.1007/s13351-014-4034-2.CrossRefGoogle Scholar
  53. Xu, Y. M., H. N. Liu, and G. Y. Xu, 2000: Introduction of Atmospheric Sciences. Nanjing University Press, 219 pp. (in Chinese)Google Scholar
  54. Ye, D. Z., and Y. X. Gao, 1979: Meteorology of the Tibetan Plateau. Science Press, 316 pp. (in Chinese)Google Scholar
  55. Yu, S. H., 2002: Water vapor imagery of vortex moving process over Qinghai-Xizang Plateau. Plateau Meteorology, 21, 199–204, https://doi.org/10.3321/j.issn:1000-0534.2002. 02.013. (in Chinese with English abstract)Google Scholar
  56. Yu, S. H., and G. B. He, 2003: Analysis on application of statellite vapour image to weather prediction over Plateau. Plateau Meteorology, 22, 75–82, https://doi.org/10.3321/j.issn:1000-0534.2003.z1.010. (in Chinese)Google Scholar
  57. Yu, S. H., and W. L. Gao, 2017: Analysis of environmental background and potential vorticity of different accompanied moving cases of Tibetan Plateau vortex and Southwest China vortex. Chinese Journal of Atmospheric Sciences, 41(4), 831–856, https://doi.org/10.3878/j.issn.1006-9895.1612.16213. (in Chinese)Google Scholar
  58. Yu, S. H., W. L. Gao, J. Peng, and Y. H. Xiao, 2014: Observational facts of sustained departure Plateau Vortexes. J. Meteor. Res., 28(2), 296–307, https://doi.org/10.1007/s13351-014-3023-9.CrossRefGoogle Scholar
  59. Zhang, F. Q., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci., 61, 440–457, https://doi.org/10.1175/1520-0469(2004)061<0440: GOMGWI>2.0.CO;2.CrossRefGoogle Scholar
  60. Zhang, F. Q., and S. E. Koch, 2000: Numerical simulations of a gravity wave event over CCOPE. Part II: Waves generated by an orographic density current. Mon. Wea. Rev., 128, 2777–2796, https://doi.org/10.1175/1520-0493(2000) 128<2777:NSOAGW>2.0.CO;2.CrossRefGoogle Scholar
  61. Zhao, Y. C., and Y. H. Wang, 2010: A case study on Plateau vortex inducing southwest vortex and producing extremely heavy rain. Plateau Meteorology, 29(4), 819–831. (in Chinese)Google Scholar
  62. Zhou, K., H. W. Liu, L. Zhao, Y. X. Zhu, Y. H. Lin, F. Y. Zhang, and N. Fu, 2017: Binary mesovortex structure associated with southwest vortex. Atmospheric Science Letters, 18, 246–252, https://doi.org/10.1002/asl.749.CrossRefGoogle Scholar
  63. Zhu, F., S. Tao, and L. Chen, 2000: The moist pool over the plateau. The Second Session of International Workshop on TIPEX (IWTE-I), China Meteorological Press, 106–112. (in Chinese)Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yi-Xuan Shou
    • 1
    Email author
  • Feng Lu
    • 1
  • Hui Liu
    • 1
  • Peng Cui
    • 1
  • Shaowen Shou
    • 2
  • Jian Liu
    • 1
  1. 1.Key Laboratory of Radiometric Calibration and Validation for Environmental SatellitesChina Meteorological Administration (LRCVES/CMA) National Satellite Meteorological CenterBeijingChina
  2. 2.Key Laboratory of Meteorological DisastersNanjing University of Information Sciences and TechnologyNanjingChina

Personalised recommendations