Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 1, pp 93–103 | Cite as

Influence of Late Springtime Surface Sensible Heat Flux Anomalies over the Tibetan and Iranian Plateaus on the Location of the South Asian High in Early Summer

  • Haoxin Zhang
  • Weiping Li
  • Weijing Li
Original Paper
  • 29 Downloads

Abstract

Variation in the location of the South Asian High (SAH) in early boreal summer is strongly influenced by elevated surface heating from the Tibetan Plateau (TP) and the Iranian Plateau (IP). Based on observational and ERA-Interim data, diagnostic analyses reveal that the interannual northwestward–southeastward (NW–SE) shift of the SAH in June is more closely correlated with the synergistic effect of concurrent surface thermal anomalies over the TP and IP than with each single surface thermal anomaly over either plateau from the preceding May. Concurrent surface thermal anomalies over these two plateaus in May are characterized by a negative correlation between sensible heat flux over most parts of the TP (TPSH) and IP (IPSH). This anomaly pattern can persist till June and influences the NW–SE shift of the SAH in June through the release of latent heat (LH) over northeastern India. When the IPSH is stronger (weaker) and the TPSH is weaker (stronger) than normal in May, an anomalous cyclone (anticyclone) appears over northern India at 850 hPa, which is accompanied by the ascent (descent) of air and anomalous convergence (divergence) of moisture flux in May and June. Therefore, the LH release over northeastern India is strengthened (weakened) and the vertical gradient of apparent heat source is decreased (increased) in the upper troposphere, which is responsible for the northwestward (southeastward) shift of the SAH in June.

Key words

Tibetan Plateau Iranian Plateau surface sensible heat flux latent heat of condensation South Asian High 

摘要

青藏高原和伊朗高原地表加热作用对初夏南亚高压位置影响显著. 基于观测资料与ERA-Interim资料, 通过诊断分析发现在年际尺度上, 6月南亚高压位置的西北-东南向摆动与前期5月份青藏高原和伊朗高原地表感热异常协同作用密切相关. 5月青藏高原地表感热与伊朗高原地表感热为负相关, 这种两高原的感热异常模态可持续至6月从而影响印度东北部上空的凝结潜热释放大小并造成6月南亚高压位置的西北-东南向变化. 当5月伊朗高原感热偏大(小)而青藏高原感热偏小(大)时, 5月和6月印度北部上空850hPa大气出现气旋式(反气旋)异常环流, 伴随着大气的异常上升(下沉)运动和异常水汽辐合(辐散). 因此, 印度东北部上空凝结潜热释放增强(减弱)而对流层上层大气显热源的垂直梯度减小(增大), 最终造成6月南亚高压位置偏西北(东南).

关键词

青藏高原 伊朗高原 地表感热通量 凝结潜热 南亚高压 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 91437219, 41275075 and 41175005) and the National Basic Research Program of China (Grant No. 2013CB430203).

References

  1. Cui, Y., and C. H. Wang, 2009: Comparison of sensible and latent heat fluxes during the transition season over the western Tibetan Plateau from reanalysis datasets. Progress in Natural Science, 19(6), 719–726, https://doi.org/10.1016/j.pnsc.2008.11.001.CrossRefGoogle Scholar
  2. Duan, A. M., and G. X. Wu, 2003: The main spatial heating patterns over the Tibetan Plateau in July and the corresponding distributions of circulation and precipitation over Eastern Asia. Acta Meteorologica Sinica, 61(4), 447–456, https://doi.org/10.3321/j.issn:0577-6619.2003.04.006. (in Chinese with English abstract)Google Scholar
  3. Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24(7–8), 793–807,  https://doi.org/10.1007/s00382-004-0488-8.CrossRefGoogle Scholar
  4. Duan, A. M., and G. X. Wu, 2008: Weakening trend in the atmospheric heat source over the Tibetan plateau during recent decades. Part I: Observations. J. Climate, 21(13), 3149–3164,  https://doi.org/10.1175/2007JCLI1912.1.Google Scholar
  5. Duan, A. M., and G. X. Wu, 2009: Weakening trend in the atmospheric heat Source over the Tibetan plateau during recent decades. Part II: Connection with climate warming. J. Climate, 22(15), 4197–4212,  https://doi.org/10.1175/2009JCLI2699.1.Google Scholar
  6. Duan, A. M., Y. M. Liu, and G. X. Wu, 2003: The April to June Tibetan plateau thermal condition and anomalies of the summer precipitation and general atmospheric circulation over East Asia. Science in China (Series D), 33(10), 997–1004,  https://doi.org/10.3969/j.issn.1674-7240.2003.10.011. (in Chinese)Google Scholar
  7. Duan, A. M., M. R. Wang, Y. H. Lei, and Y. F. Cui, 2013: Trends in summer rainfall over China associated with the Tibetan plateau sensible heat source during 1980–2008. J. Climate, 26(1), 261–275,  https://doi.org/10.1175/JCLI-D-11-00669.1.CrossRefGoogle Scholar
  8. Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 75, 180–186.CrossRefGoogle Scholar
  9. Gao, Y. X., C. Li, F. M. Yuan, X. H. Yang, and X. C. Yong, 1982: Influences of land-sea and topography distributions on temperature fields in July. Plateau Meteorology, 1(4), 46–59. (in Chinese with English abstract)Google Scholar
  10. Hu, Q., and S. Feng, 2004: A role of the soil enthalpy in land memory. J. Climate, 17(18), 3633–3643, https://doi.org/10.1175/1520-0442(2004)017<3633:AROTSE>2.0.CO;2.CrossRefGoogle Scholar
  11. Lau, N. C., and M. J. Nath, 2006: ENSO modulation of the interannual and intraseasonal variability of the East Asian Monsoon—A model study. J. Climate, 19(18), 4508–4530, https://doi.org/10.1175/JCLI3878.1.CrossRefGoogle Scholar
  12. Li, T., Y. S. Zhang, C. P. Chang, and B. Wang, 2001: On the relationship between Indian Ocean sea surface temperature and Asian Summer Monsoon. Geophys. Res. Lett., 28(14), 2843–2846, https://doi.org/10.1029/2000GL011847.CrossRefGoogle Scholar
  13. Liang, X. Y., Y. M. Liu, and G. X. Wu, 2005: Effect of Tibetan plateau on the site of onset and intensity of the Asian summer monsoon. Acta Meteorologica Sinica, 63(5), 799–805, https://doi.org/10.11676/qxxb2005.076. (in Chinese with English abstract)Google Scholar
  14. Liu, B. Q., C. W. Zhu, and Y. Yuan, 2017a: Two interannual dominant modes of the South Asian High in May and their linkage to the tropical SST anomalies. Climate Dyn., 49, 2705–2720,  https://doi.org/10.1007/s00382-016-3490-z.CrossRefGoogle Scholar
  15. Liu, B. Q., G. X. Wu, J. Y. Mao, and J. H. He, 2013: Genesis of the South Asian high and its impact on the Asian summer monsoon onset. J. Climate, 26(9), 2976–2991,  https://doi.org/10.1175/JCLI-D-12-00286.1.CrossRefGoogle Scholar
  16. Liu, Y. M., and G. X. Wu, 2004: Progress in the study on the formation of the summertime subtropical anticyclone. Adv. Atmos. Sci., 21, 322–342, https://doi.org/10.1007/BF02915562.CrossRefGoogle Scholar
  17. Liu, Y. M., G. X. Wu, H. Liu, and P. Liu, 2001: Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere. Climate Dyn., 17(4), 327–338,  https://doi.org/10.1007/s003820000117.CrossRefGoogle Scholar
  18. Liu, Y. M., Z. Q. Wang, H. F. Zhuo, and G. X. Wu, 2017b: Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing II. Sensible heating over Tibetan-Iranian Plateau. Science China Earth Sciences, 60(4), 733–744,  https://doi.org/10.1007/s11430-016-9016-3.CrossRefGoogle Scholar
  19. Qian, Y. F., Q. Zhang, and X. H. Zhang, 2002b: The South Asian high and its effects on China’s Mid-summer climate abnormality. Journal of Nanjing University (Natural Science), 38(3), 295–307, https://doi.org/10.3321/j.issn:0469-5097.2002.03.004. (in Chinese with English abstract)Google Scholar
  20. Qian, Y. F., Q. Zhang, Y. H. Yao, and X. H. Zhang, 2002a: Seasonal variation and heat preference of the South Asia high. Adv. Atmos. Sci., 19(5), 821–836,  https://doi.org/10.1007/s00376-002-0047-3.CrossRefGoogle Scholar
  21. Wang, Z. Q., A. M. Duan, and G. X. Wu, 2014: Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: Case studies using the WRF model. Climate Dyn., 42, 2885–2898,  https://doi.org/10.1007/s00382-013-1800-2.CrossRefGoogle Scholar
  22. Wei, W., R. H. Zhang, M. Wen, B. J. Kim, and J. C. Nam, 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28(7), 2623–2634, https://doi.org/10.1175/JCLI-D-14-00454.1.CrossRefGoogle Scholar
  23. Wu, G. X., and H. Liu, 1998: Vertical vorticity development owing to down-sliding at slantwise isentropic surface. Dyn. Atmos. Oceans, 27, 715–743.CrossRefGoogle Scholar
  24. Wu, G. X., J. Y. Mao, A. M. Duan, and Q. Zhang, 2004: Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate. Acta Meteorologica Sinica, 62(5), 528–540, https://doi.org/10.3321/j.issn:0577-6619.2004.05.002. (in Chinese with English abstract)Google Scholar
  25. Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal Controls on the Asian Summer Monsoon. Scientific Reports, 2, 404, https://doi.org/10.1038/srep00404.CrossRefGoogle Scholar
  26. Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan plateau on Asian climate. Journal of Hydrometeorology, 8, 770–789, https://doi.org/10.1175/JHM609.1.CrossRefGoogle Scholar
  27. Wu, G. X., and Coauthors, 2015: Tibetan plateau climate dynamics: Recent research progress and outlook. National Science Review, 2(1), 100–116, https://doi.org/10.1093/nsr/nwu045.CrossRefGoogle Scholar
  28. Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30(4), 611–627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.CrossRefGoogle Scholar
  29. Yang, K., X. F. Guo, and B. Y. Wu, 2011: Recent trends in surface sensible heat flux on the Tibetan Plateau. Science China Earth Sciences, 54(1), 19–28,  https://doi.org/10.1007/s11430-010-4036-6.CrossRefGoogle Scholar
  30. Ye, D. Z., S. W. Luo, and B. Z. Zhu, 1957: The wind structure and heat balance in the lower troposphere over Tibetan plateau and its surrounding. Acta Meteorologica Sinica, 28(2), 108–121, https://doi.org/10.11676/qxxb1957.010. (in Chinese with English abstract)Google Scholar
  31. Zhang, H. X., W. J. Li, and W. P. Li, 2017: Spatial and temporal distribution characteristics of surface heat fluxes over both Tibetan Plateau and Iranian Plateau in boreal spring and summer and their relationships. Acta Meteorologica Sinica, 75(2), 260–274, https://doi.org/10.11676/qxxb2017.002. (in Chinese with English abstract)Google Scholar
  32. Zhang, P. F., Y. M. Liu, and B. He, 2016: Impact of East Asian summer monsoon on the interannual variation of South Asian high. J. Climate, 29(1), 159–173, https://doi.org/10.1175/JCLI-D-15-0118.1.CrossRefGoogle Scholar
  33. Zhang, Y., and Y. F. Qian, 2002: Thermal effect of surface heat source over the Tibetan plateau on the onset of Asian summer monsoon. Journal of Nanjing Institute of Meteorology, 25(3), 298–306, https://doi.org/10.3969/j.issn.1674-7097.2002.03.002. (in Chinese with English abstract)Google Scholar
  34. Zhang, Y. S., and G. X. Wu, 1998: Diagnostic investigations of mechanism of onset of Asian summer monsoon and abrupt seasonal transitions over northern hemisphere Part I. Acta Meteorologica Sinica, 56(5), 513–528, https://doi.org/10.11676/qxxb1998.047. (in Chinese with English abstract)Google Scholar
  35. Zhang, Y. S., and G. X. Wu, 1999: Diagnostic investigations on the mechanism of the onset of Asian summer monsoon and abrupt seasonal transitions over the northern hemisphere Part: II the role of surface sensible heating over Tibetan plateau and surrounding regions. Acta Meteorologica Sinica, 57(1), 56–73, https://doi.org/10.11676/qxxb1999.005. (in Chinese with English abstract)Google Scholar
  36. Zhang, Y. Y., Z. X. Li, and B. Q. Liu, 2015: Interannual variability of surface sensible heating over the Tibetan plateau in boreal spring and its influence on the onset time of the Indian summer monsoon. Chinese Journal of Atmospheric Sciences, 39(6), 1059–1072, https://doi.org/10.3878/j.issn.1006-9895.1410.14226. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory for Climate StudiesChina Meteorological AdministrationBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations