Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 6, pp 671–681 | Cite as

Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model

  • Xianghui Fang
  • Fei Zheng
Original Paper

Abstract

Severe biases exist in state-of-the-art general circulation models (GCMs) in capturing realistic central-Pacific (CP) El Niño structures. At the same time, many observational analyses have emphasized that thermocline (TH) feedback and zonal advective (ZA) feedback play dominant roles in the development of eastern-Pacific (EP) and CP El Niño–Southern Oscillation (ENSO), respectively. In this work, a simple linear air–sea coupled model, which can accurately depict the strength distribution of the TH and ZA feedbacks in the equatorial Pacific, is used to investigate these two types of El Niño. The results indicate that the model can reproduce the main characteristics of CP ENSO if the TH feedback is switched off and the ZA feedback is retained as the only positive feedback, confirming the dominant role played by ZA feedback in the development of CP ENSO. Further experiments indicate that, through a simple nonlinear control approach, many ENSO characteristics, including the existence of both CP and EP El Niño and the asymmetries between El Niño and La Niña, can be successfully captured using the simple linear air–sea coupled model. These analyses indicate that an accurate depiction of the climatological sea surface temperature distribution and the related ZA feedback, which are the subject of severe biases in GCMs, is very important in simulating a realistic CP El Niño.

Key words

central-Pacific El Niño eastern-Pacific El Niño simple coupled model simulation asymmetry 

摘 要

现今的环流模式(GCMs)在模拟中部型El Niño时存在严重的偏差. 与此同时, 很多基于观测的分析指出温跃层反馈和纬向平流反馈分别对东部型和中部型El Niño–Southern Oscillation (ENSO)起着主导作用. 本文利用一个简单的海气耦合模式对两类El Niño进行了研究. 基于观测信息, 该模式能够准确给出温跃层反馈和纬向平流反馈的强度沿赤道太平洋的分布. 研究结果表明, 当关闭模式中的温跃层反馈而仅保留纬向平流反馈项时, 模式能够模拟出中部型ENSO的主要特征. 这验证了纬向平流反馈对中部型ENSO的支配作用. 接着, 通过在模式中引入一个简单的非线性调控项, 很多ENSO特征都能被这一简单的海气耦合模式抓住, 包括同时产生两类El Niño以及El Niño与La Niña的非对称性. 该模式分析表明, 若要模拟出接近真实的中部型El Niño, 海表温度的气候态分布及其相联系的纬向平流反馈必须足够准确. 而这恰恰是如今环流模式存在的严重偏差之一.

关键词

中部型El Niño 东部型El Niño 简单耦合模式 模拟 非对称性 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors wish to thank the two anonymous reviewers for their very helpful comments and suggestions. This work was supported by a project funded by the China Postdoctoral Science Foundation (Grant No. 2017M610225), and the National Natural Science Foundation of China (Grant No. 41576019). The author is grateful to Mu MU for his support and comments on the manuscript. The monthly ocean temperature and oceanic circulation data were obtained from http://www.cpc.ncep.noaa.gov/products/GODAS/.

References

  1. Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys Res., 112, C11007, https://doi.org/10.1029/2006 JC003798.CrossRefGoogle Scholar
  2. Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. H. Li, and D. G. Dewitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631–651, https://doi.org/10.1175/BAMS-D-11-00111.1.CrossRefGoogle Scholar
  3. Behringer, D., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Washington State Convention and Trade Center, Amer. Meteor. Soc., 2. 3. [Available online at http://ams.confex.com/ams/pdfpapers/70720.pdf.]Google Scholar
  4. Burgers, G., and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26, 1027–1030, https://doi.org/10.1029/1999GL900161.CrossRefGoogle Scholar
  5. Burgers, G., and G. J. Van Oldenborgh, 2003: On the impact of local feedbacks in the central Pacific on the ENSO cycle. J. Climate, 16, 2396–2407, https://doi.org/10.1175/2766.1.CrossRefGoogle Scholar
  6. Burgers, G., M. A. Balmaseda, F. C. Vossepoel, G. J. Van Oldenborgh, and P. J. Van Leeuwen, 2002: Balanced ocean-data assimilation near the equator. J. Phys. Oceanogr., 32, 2509–2519, https://doi.org/10.1175/1520-0485-32.9.2509.CrossRefGoogle Scholar
  7. Chen, D. K., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733–736, https://doi.org/10.1038/nature02439.CrossRefGoogle Scholar
  8. Fang, X.-H., and F. Zheng, 2014: Effect of decadal changes in air-sea interaction on the climate mean state over the tropical Pacific. Atmos. Oceanic Sci. Lett., 7, 400–405, https://doi.org/10.3878/j.issn.1674-2834.14.0019.CrossRefGoogle Scholar
  9. Fang, X.-H., F. Zheng, and J. Zhu, 2015: The cloud-radiative effect when simulating strength asymmetry in two types of El Niño events using CMIP5 models. J. Geophys. Res., 120, 4357–4369, https://doi.org/10.1002/2014JC010683.CrossRefGoogle Scholar
  10. Feng, J., and J. P. Li, 2011: Influence of El Niño Modoki on spring rainfall over south China. J. Geophys. Res., 116, D13102, https://doi.org/10.1029/2010JD015160.CrossRefGoogle Scholar
  11. Fu, C. B., and J. Fletcher, 1985: Two patterns of equatorial warming associated with El Niño. Science Bulletin, 30, 1360–1364.Google Scholar
  12. Ham, Y. G., J. S. Kug, J. Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geoscience, 6, 112–116, https://doi.org/10.1038/ngeo1686.CrossRefGoogle Scholar
  13. Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829, https://doi.org/10.1175/1520-0469(1997)054<0811: AEORPF>2.0.CO;2.Google Scholar
  14. Jin, F.-F., S. I. An, A. Timmermann, and J. X. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, https://doi.org/10.1029/2002GL016356.CrossRefGoogle Scholar
  15. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DEO AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, https://doi.org/10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  16. Kao, H. Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632, https://doi.org/10.1175/2008JCLI2309.1.CrossRefGoogle Scholar
  17. Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 77–80, https://doi.org/10.1126/science. 1174062.CrossRefGoogle Scholar
  18. Kirtman, B. P., and P. S. Schopf, 1998: Decadal Variability in ENSO Predictability and Prediction. J. Climate, 11, 2804–2822, https://doi.org/10.1175/1520-0442(1998)011 <2804:DVIEPA>2.0.CO;2.CrossRefGoogle Scholar
  19. Kleeman, R., 1993: On the dependence of hindcast skill on ocean thermodynamics in a coupled ocean-atmosphere model. J. Climate, 6, 2012–2033, https://doi.org/10.1175/1520-0442 (1993)006<2012:OTDOHS>2.0.CO;2.CrossRefGoogle Scholar
  20. Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515, https://doi.org/10.1175/2008JCLI2624. 1.CrossRefGoogle Scholar
  21. Kumar, K. K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115–119, https://doi.org/10.1126/science.1131152.CrossRefGoogle Scholar
  22. Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.CrossRefGoogle Scholar
  23. Latif, M., 1987: Tropical ocean circulation experiments. J. Phys. Oceanogr., 17, 246–263, https://doi.org/10.1175/1520-0485 (1987)017<0246:TOCE>2.0.CO;2.CrossRefGoogle Scholar
  24. Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophy. Res., 103, 14 375–14 393, https://doi.org/10.1029/97JC03413.CrossRefGoogle Scholar
  25. Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.Google Scholar
  26. Philip, S. Y., and G. J. V. Van Oldenborgh, 2010: Atmospheric properties of ENSO: Models versus observations. Climate Dyn., 34, 1073–1091, https://doi.org/10.1007/s00382-009-0579-7.CrossRefGoogle Scholar
  27. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, https://doi.org/10.1175/2007JCLI2100.1.CrossRefGoogle Scholar
  28. Su, J. Z., R. H. Zhang, T. Li, X. Y. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605–617, https://doi.org/10.1175/2009JCLI2894.1.CrossRefGoogle Scholar
  29. Sun, D. Z., and T. Zhang, 2006: A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett., 33, L07710, https://doi.org/10.1029/2005GL025296.CrossRefGoogle Scholar
  30. Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923–3926, https://doi.org/10.1029/2001GL013435.CrossRefGoogle Scholar
  31. Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 2668–2675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.CrossRefGoogle Scholar
  32. Wang, W. Q., M. Y. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950–969, https://doi.org/10.1175/2010WAF2222345.1.CrossRefGoogle Scholar
  33. Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of stand ing Central Pacific Warming after the late 1990s. Climate Dyn., 41, 327–340, https://doi.org/10.1007/s00382-012-1427-8.CrossRefGoogle Scholar
  34. Xue, Y., M. Y. Chen, A. Kumar, Z.-Z. Hu, and W. Q. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System Version 2. J. Climate, 26, 5358–5378, https://doi.org/10.1175/JCLI-D-12-00600.1.CrossRefGoogle Scholar
  35. Yu, J.-Y., and H.-Y. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J. Geophys. Res., 112, 125–138, https://doi.org/10.1029/2006JD007654.CrossRefGoogle Scholar
  36. Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708–720. https://doi.org/10.1175/2010JCLI3688.1.CrossRefGoogle Scholar
  37. Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23, 2869–2884, https://doi.org/10.1175/2010JCLI3171.1.CrossRefGoogle Scholar
  38. Zhang, W. J., F.-F. Jin, J. P. Li, and H.-L. Ren, 2011: Contrasting impacts of two-type El Niño over the western north Pacific during boreal autumn. J. Meteor. Soc. of Japan, 89, 563–569, https://doi.org/10.2151/jmsj.2011-510.CrossRefGoogle Scholar
  39. Zhang, W., Q.-L. Chen, and F. Zheng, 2015: Bias corrections of the heat flux damping process to improve the simulation of ENSO post-2000. SOLA, 11, 181–185, https://doi.org/10.2151/sola. 2015-040.CrossRefGoogle Scholar
  40. Zheng, F., and J.-Y. Yu, 2017: Contrasting the skills and biases of deterministic predictions for the two types of El Niño. Adv. Atmos. Sci., 34(12), 1395–1403, https://doi.org/10.1007/s00376-017-6324-y.CrossRefGoogle Scholar
  41. Zheng, F., X.-H. Fang, J.-Y. Yu, and J. Zhu, 2014: Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41, 7651–7657, https://doi.org/10.1002/2014GL062125.CrossRefGoogle Scholar
  42. Zheng, F., W. Zhang, J.-Y. Yu, and Q.-L. Chen, 2015: A possible bias of simulating the post-2000 changing ENSO. Science Bulletin, 60(21), 1850–1857, https://doi.org/10.1007/s11434-015-0912-y.CrossRefGoogle Scholar
  43. Zheng, F., X.-H. Fang, J. Zhu, J.-Y. Yu, and X.-C. Li, 2016: Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett., 43, 12 560–12 568, https://doi.org/10.1002/2016GL071636.CrossRefGoogle Scholar
  44. Zhu, J., G. Zhou, R.-H. Zhang, and Z. Sun, 2011: On the role of oceanic entrainment temperature (Te) in decadal changes of El Niño/Southern Oscillation. Annales Geophysicae, 29(3), 529–540, https://doi.org/10.5194/angeo-29-529-2011.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Atmospheric SciencesFudan UniversityShanghaiChina
  2. 2.International Center for Climate and Environment Science (ICCES), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations