Advances in Atmospheric Sciences

, Volume 35, Issue 7, pp 813–825 | Cite as

Comparisons of Three-Dimensional Variational Data Assimilation and Model Output Statistics in Improving Atmospheric Chemistry Forecasts

  • Chaoqun Ma
  • Tijian Wang
  • Zengliang Zang
  • Zhijin Li
Original Paper

Abstract

Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation (DA) and model output statistics (MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here, a one-month air quality forecast with the Weather Research and Forecasting-Chemistry (WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational (3DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3DVar DA in improving the operational forecasting ability of WRF-Chem.

Key words

data assimilation model output statistics WRF-Chem operational forecast 

摘要

因为大气化学模式中存在各种不确定性, 所以其预报冬季污染的能力较差. 一般来说, 可以使用数据同化或者模式后处理技术来大幅减小这些不确定性. 然而, 对于这两项技术的相对重要性以及同时使用的效果, 目前还缺乏足够的研究. 因此, 本文尝试用Weather Research and Forecasting–Chemistry (WRF-Chem) 模型进行了为期一个月的预报实验. 预报集中关注了中国河北省地区且以近似业务预报的形式展开. 在预报期间, 我们在不同的实验中分别使用了基于三维变分的数据同化和基于一维卡尔曼滤波的模式后处理技术, 以比较它们在改善模式预报上的性能. 在另一个实验中, 我们还同时使用了这两种技术. 预报结果与观测的对比表明: 使用了模式后处理技术的化学预报比使用了三维变分同化的表现要好, 并且这种优势体现在所有被测物种和整个72小时预报上. 另外, 同时使用两种技术的预报结果并不一定比只使用模式后处理的要好, 不过前者和后者的差距很小而且没有特定的规律. 综上所述, 模式后处理技术比三维变分数据同化更适合被用于提升WRF-Chem模式的业务预报能力.

关键词

数据同化 模式后处理 WRF-Chem 业务预报 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, I. J., H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski, and U. Shankar, 1998: Modal aerosol dynamics model for Europe: Development and first applications. Atmos. Environ., 32, 2981–2999, http://dx.doi.org/10.1016/S1352-2310(98)00006-5. CrossRefGoogle Scholar
  2. Alexe, M., and Coauthors, 2015: Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY. Atmos. Chem. Phys., 15, 113–133, http://dx.doi.org/10.5194/acp-15-113-2015. CrossRefGoogle Scholar
  3. Anadranistakis, M., K. Lagouvardos, V. Kotroni, and H. Elefteriadis, 2004: Correcting temperature and humidity forecasts using Kalman filtering: Potential for agricultural protection in Northern Greece. Atmos. Res., 71, 115–125, http://dx.doi.org/10.1016/j.atmosres.2004.03.007. CrossRefGoogle Scholar
  4. Barbu, A. L., A. J. Segers, M. Schaap, A.W. Heemink, and P. J. H. Builtjes, 2009: A multi-component data assimilation experiment directed to sulphur dioxide and sulphate over Europe. Atmos. Environ., 43, 1622–1631, http://dx.doi.org/10.1016/j.atmosenv.2008.12.005. CrossRefGoogle Scholar
  5. Barret, B., and Coauthors, 2008: Transport pathways of CO in the African upper troposphere during the monsoon season: A study based upon the assimilation of spaceborne observations. Atmos. Chem. Phys., 8, 3231–3246, http://dx.doi.org/10.5194/acp-8-3231-2008. CrossRefGoogle Scholar
  6. Benedetti, A., and Coauthors, 2009: Aerosol analysis and forecast in the European Centre for Medium-RangeWeather Forecasts Integrated Forecast System: 2. Data assimilation. J. Geophys. Res., 114, D13205, http://dx.doi.org/10.1029/2008JD011115. CrossRefGoogle Scholar
  7. Bocquet, M., and Coauthors, 2015: Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models. Atmos. Chem. Phys., 15, 5325–5358, http://dx.doi.org/10.5194/acp-15-5325-2015. CrossRefGoogle Scholar
  8. Denby, B., M. Schaap, A. Segers, P. Builtjes, and J. Horálek, 2008: Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale. Atmos. Environ., 42, 7122–7134, http://dx.doi.org/10.1016/j.atmosenv.2008. 05.058.CrossRefGoogle Scholar
  9. Dubovik, O., T. Lapyonok, Y. J. Kaufman, M. Chin, P. Ginoux, R. A. Kahn, and A. Sinyuk, 2008: Retrieving global aerosol sources from satellites using inverse modeling. Atmos. Chem. Phys., 8, 209–250, http://dx.doi.org/10.5194/acp-8-209-2008. CrossRefGoogle Scholar
  10. Elbern, H., A. Strunk, H. Schmidt, and O. Talagrand, 2007: Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmos. Chem. Phys., 7, 3749–3769, http://dx.doi.org/10.5194/acp-7-3749-2007. CrossRefGoogle Scholar
  11. Galanis, G., and M. Anadranistakis, 2002: A one-dimensional Kalman filter for the correction of near surface temperature forecasts. Meteorological Applications, 9, 437–441, http://dx.doi.org/10.1017/S1350482702004061. CrossRefGoogle Scholar
  12. Geer, A. J., and Coauthors, 2006: The ASSET intercomparison of ozone analyses: Method and first results. Atmos. Chem. Phys., 6, 5445–5474, http://dx.doi.org/10.5194/acp-6-5445-2006. CrossRefGoogle Scholar
  13. Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203–1211, http://dx.doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2. CrossRefGoogle Scholar
  14. Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 6957–6975, http://dx.doi.org/10.1016/j.atmosenv.2005.04.027. CrossRefGoogle Scholar
  15. Henze, D. K., J. H. Seinfeld, and D. T. Shindell, 2009: Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOSChem. Atmos. Chem. Phys., 9, 5877–5903, http://dx.doi.org/10.5194/acp-9-5877-2009. CrossRefGoogle Scholar
  16. Honore, C., and Coauthors, 2008: Predictability of European air quality: Assessment of 3 years of operational forecasts and analyses by the PREV’AIR system. J. Geophys. Res., 113, http://dx.doi.org/10.1029/2007JD008761.
  17. Inness, A., and Coauthors, 2015: Data assimilation of satelliteretrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s Composition-IFS. Atmos. Chem. Phys., 15, 5275–5303, http://dx.doi.org/10.5194/acp-15-5275-2015. CrossRefGoogle Scholar
  18. Jiang, Z. Q., Z. Q. Liu, T. J. Wang, C. S. Schwartz, H. C. Lin, and F. Jiang, 2013: Probing into the impact of 3DVAR assimilation of surface PM10 observations over China using process analysis. J. Geophys. Res., 118, 6738–6749, http://dx.doi.org/10.1002/jgrd.50495. CrossRefGoogle Scholar
  19. Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82, 35–45, http://dx.doi.org/10.1115/1.3662552. CrossRefGoogle Scholar
  20. Li, Z., Z. Zang, Q. B. Li, Y. Chao, D. Chen, Z. Ye, Y. Liu, and K. N. Liou, 2013: A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction. Atmos. Chem. Phys., 13, 4265–4278, http://dx.doi.org/10.5194/acp-13-4265-2013. CrossRefGoogle Scholar
  21. Libonati, R., I. Trigo, and C. C. Dacamara, 2008: Correction of 2m-temperature forecasts using Kalman Filtering technique. Atmos. Res., 87, 183–197, http://dx.doi.org/10.1016/j.atmosres.2007.08.006. CrossRefGoogle Scholar
  22. Liu, Z. Q., Q. H. Liu, H. C. Lin, C. S. Schwartz, Y. H. Lee, and T. J. Wang, 2011: Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia. J. Geophys. Res., 116, D23206, http://dx.doi.org/10.1029/2011JD016159. Google Scholar
  23. Makar, P. A., and Coauthors, 2015: Feedbacks between air pollution and weather, Part 1: Effects on weather. Atmos. Environ., 115, 442–469, http://dx.doi.org/10.1016/j.atmosenv. 2014.12.003.CrossRefGoogle Scholar
  24. Mizzi, A. P., A. F. Arellano Jr., D. P. Edwards, J. L. Anderson, and G. G. Pfister, 2016: Assimilating compact phase space retrievals of atmospheric composition with WRF-Chem/DART: A regional chemical transport/ensemble Kalman filter data assimilation system. Geoscientific Model Development, 9, 965–978, http://dx.doi.org/10.5194/gmd-9-965-2016. CrossRefGoogle Scholar
  25. Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.CrossRefGoogle Scholar
  26. Saide, P. E., G. R. Carmichael, S. N. Spak, P. Minnis, and J. K. Ayers, 2012: Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number. Proceedings of the National Academy of Sciences of the United States of America, 109, 11 939–11 943, http://dx.doi.org/10.1073/pnas.1205877109. CrossRefGoogle Scholar
  27. Saide, P. E., and Coauthors, 2015: Central American biomass burning smoke can increase tornado severity in the U.S. Geophys. Res. Lett., 42, 956–965, http://dx.doi.org/10.1002/2014GL062826. CrossRefGoogle Scholar
  28. Schell, B., I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel, 2001: Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res., 106, 28 275–28 293, http://dx.doi.org/10.1029/2001JD000384. CrossRefGoogle Scholar
  29. Schmidt, H., and D. Martin, 2003: Adjoint sensitivity of episodic ozone in the Paris area to emissions on the continental scale. J. Geophys. Res., 108, 8561, http://dx.doi.org/10.1029/2001JD001583. CrossRefGoogle Scholar
  30. Schwartz, C. S., Z. Q. Liu, H. C. Lin, and S. A. McKeen, 2012: Simultaneous three-dimensional variational assimilation of surface fine particulate matter and MODIS aerosol optical depth. J. Geophys. Res., 117, D13202, http://dx.doi.org/10.1029/2011JD017383. CrossRefGoogle Scholar
  31. Semane, N., and Coauthors, 2009: On the extraction of wind information from the assimilation of ozone profiles in Météo-France 4-D-Var operational NWP suite. Atmos. Chem. Phys., 9, 4855–4867, http://dx.doi.org/10.5194/acp-9-4855-2009. CrossRefGoogle Scholar
  32. Stockwell, W. R., P. Middleton, J. S. Chang, and X. Y. Tang, 1990: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res., 95, 16 343–16 367, http://onlinelibrary.wiley.com/doi/10.1029/JD095iD10p16343/full. CrossRefGoogle Scholar
  33. Struzewska, J., J. W. Kaminski, and M. Jefimow, 2016: Application of model output statistics to the GEM-AQ high resolution air quality forecast. Atmos. Res., 181, 186–199, http://dx.doi.org/10.1016/j.atmosres.2016.06.012. CrossRefGoogle Scholar
  34. Tang, X., J. Zhu, Z. F. Wang, and A. Gbaguidi, 2011: Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions. Atmos. Chem. Phys., 11, 12 901–12 916, http://dx.doi.org/10.5194/acp-11-12901-2011. CrossRefGoogle Scholar
  35. Tang, X., J. Zhu, Z. F. Wang, A. Gbaguidi, C. Y. Lin, J. Y. Xin, T. Song, and B. Hu, 2016: Limitations of ozone data assimilation with adjustment of NOx emissions: Mixed effects on NO2 forecasts over Beijing and surrounding areas. Atmos. Chem. Phys., 16, 6395–6405, http://dx.doi.org/10.5194/acp-16-6395-2016. CrossRefGoogle Scholar
  36. Taylor, A. A., and L. M. Leslie, 2005: A single-station approach to model output statistics temperature forecast error assessment. Wea. Forecasting, 20, 1006–1020, http://dx.doi.org/10.1175/WAF893.1. CrossRefGoogle Scholar
  37. van Loon, M., and Coauthors, 2007: Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ., 41, 2083–2097, http://dx.doi.org/10.1016/j.atmosenv.2006.10.073. CrossRefGoogle Scholar
  38. Wang, Y., K. N. Sartelet, M. Bocquet, and P. Chazette, 2014: Modelling and assimilation of lidar signals over Greater Paris during the MEGAPOLI summer campaign. Atmos. Chem. Phys., 14, 3511–3532, http://dx.doi.org/10.5194/acp-14-3511-2014. CrossRefGoogle Scholar
  39. Wargan, K., S. Pawson, M. A. Olsen, J. C. Witte, A. R. Douglass, J. R. Ziemke, S. E. Strahan, and J. E. Nielsen, 2015: The global structure of upper troposphere-lower stratosphere ozone in GEOS-5: A multiyear assimilation of EOS Aura data. J. Geophys. Res., 120, 2013–2036, http://dx.doi.org/10.1002/2014JD022493. Google Scholar
  40. Wilson, L. J., and M. Vallée, 2003: The Canadian Updateable Model Output Statistics (UMOS) system: Validation against perfect prog. Wea. Forecasting, 18, 288–302, http://dx.doi. org/10.1175/1520-0434(2003)018&lt;0288:TCUMOS&gt;2.0.CO; 2.CrossRefGoogle Scholar
  41. Yerramilli, A., and Coauthors, 2010: Simulation of surface ozone pollution in the central gulf coast region using WRF/Chem model: Sensitivity to PBL and land surface physics. Advances in Meteorology, 2010, Article ID 319138, http://dx.doi.org/10.1155/2010/319138. CrossRefGoogle Scholar
  42. Yin, X. M., T. Dai, N. A. J. Schutgens, D. Goto, T. Nakajima, and G. Y. Shi, 2016: Effects of data assimilation on the global aerosol key optical properties simulations. Atmos. Res., 178–179, 175–186, https://doi.org/10.1016/j.atmosres.2016. 03.016.CrossRefGoogle Scholar
  43. Yumimoto, K., and Coauthors, 2016: Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett., 43, 5886–5894, http://dx.doi.org/10.1002/2016GL069298. CrossRefGoogle Scholar
  44. Zhang, L., and Coauthors, 2015: Source attribution of particulate matter pollution over North China with the adjoint method. Environmental Research Letters, 10, 084011, https://doi.org/10.1088/1748-9326/10/8/084011. CrossRefGoogle Scholar
  45. Zhang, L., and Coauthors, 2016: Sources and processes affecting fine particulate matter pollution over North China: An adjoint analysis of the Beijing APEC Period. Environ. Sci. Technol., 50, 8731–8740, http://dx.doi.org/10.1021/acs.est.6b03010. CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chaoqun Ma
    • 1
    • 2
    • 3
  • Tijian Wang
    • 1
    • 2
    • 3
  • Zengliang Zang
    • 4
  • Zhijin Li
    • 5
  1. 1.School of Atmospheric SciencesNanjing UniversityNanjingChina
  2. 2.CMA-NJU Joint Laboratory for Climate Prediction StudiesNanjingChina
  3. 3.Jiangsu Collaborative Innovation Center for Climate ChangeNanjingChina
  4. 4.Institute of Meteorology and OceanographyPLA University of Science and TechnologyNanjingChina
  5. 5.Joint Institute for Regional Earth System Science and EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations