Advances in Atmospheric Sciences

, Volume 35, Issue 7, pp 881–895 | Cite as

Dominant SST Mode in the Southern Hemisphere Extratropics and Its Influence on Atmospheric Circulation

  • Fei Zheng
  • Jianping Li
  • Fred Kucharski
  • Ruiqiang Ding
  • Ting Liu
Original Paper


The variability in the Southern Ocean (SO) sea surface temperature (SST) has drawn increased attention due to its unique physical features; therefore, the temporal characteristics of the SO SST anomalies (SSTA) and their influence on extratropical atmospheric circulation are addressed in this study. Results from empirical orthogonal function analysis show that the principal mode of the SO SSTA exhibits a dipole-like structure, suggesting a negative correlation between the SSTA in the middle and high latitudes, which is referred to as the SO Dipole (SOD) in this study. The SOD features strong zonal symmetry, and could reflect more than 50% of total zonal-mean SSTA variability. We find that stronger (weaker) Subantarctic and Antarctic polar fronts are related to the positive (negative) phases of the SOD index, as well as the primary variability of the large-scale SO SSTA meridional gradient. During December–January–February, the Ferrel cell and the polar jet shift toward the Antarctic due to changes in the SSTA that could be associated with a positive phase of the SOD, and are also accompanied by a poleward shift of the subtropical jet. During June–July–August, in association with a positive SOD, the Ferrel cell and the polar jet are strengthened, accompanied by a strengthened subtropical jet. These seasonal differences are linked to the differences in the configuration of the polar jet and the subtropical jet in the Southern Hemisphere.

Key words

extratropical sea surface temperature air–sea interaction Southern Annular Mode 


南大洋海表温度变率因其独特的物理特征得到越来越多的关注, 本文分析了南大洋海表温度变率特征及其对南半球热带外大气环流的影响。经验正交函数分解的结果表明, 南大洋海温变率的主模态表现为偶极子结构, 反应了南半球中、高纬度之间海温的反向变化, 称为南大洋偶极子 (SOD)。 SOD具有显著的纬向对称性, 其对南半球热带外纬向平均海温的解释方差在50%以上。当SOD为正 (负) 位相时, 海温经向梯度加强 (减弱)。 在12-2月的南半球夏季, 费雷尔环流和极锋急流位置的向极移动与SOD正位相对应的海温异常有关, 并伴随副热带急流位置的向极移动。在6-8月的南半球冬季, SOD正位相对应费雷尔环流和极锋急流强度的增强, 副热带急流的强度也相应增强。 这种SOD对大气环流影响的季节差异, 与极锋急流和副热带急流在不同季节的不同配置有关。


热带外海温 海气相互作用 南半球环状模 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the editor and the anonymous reviewers for their comments and suggestions, which significantly contributed to improving the manuscript. This work was jointly supported by a National Natural Science Foundation of China NSFC project (Grant No. 41405086), the strategic priority research program grant of the Chinese Academy of Sciences (Grant No. XDA19070402), and the NSFC projects (41775090, 41705049). The NCEP/NCAR atmospheric reanalysis datasets are available at We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output."


  1. Bracco, A., F. Kucharski, R. Kallummal, and F. Molteni, 2004: Internal variability, external forcing and climate trends in multi-decadal AGCM ensembles. Climate Dyn., 23, 659–678, CrossRefGoogle Scholar
  2. Cai, W. J., and I. G. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15, 1159–1174,<1159:MOIVOT>2.0. CO;2.CrossRefGoogle Scholar
  3. Chen, W. Y., 1982: Fluctuations in northern hemisphere 700 mb height field associated with the Southern Oscillation. Mon. Wea. Rev., 110, 808–823,<0808:FINHMH>2.0.CO;2.CrossRefGoogle Scholar
  4. Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dyn., 25, 477–496, CrossRefGoogle Scholar
  5. Ciasto, L. M., and D. W. J. Thompson, 2008: Observations of large–scale ocean–atmosphere interaction in the southern hemisphere. J. Climate, 21, 1244–1259, CrossRefGoogle Scholar
  6. Compagnucci, R. H., and M. B. Richman, 2007: Can principal component analysis provide atmospheric circulation or teleconnection patterns? International Journal of Climatology, 28, 703–726, CrossRefGoogle Scholar
  7. Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249–266,<0249:POSSTA>2.0.CO;2.CrossRefGoogle Scholar
  8. Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527–546, CrossRefGoogle Scholar
  9. Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022,<1016:LFIOAT>2.0.CO;2.CrossRefGoogle Scholar
  10. Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459–462, CrossRefGoogle Scholar
  11. Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 3043–3057,<3043: SVITSH>2.0.CO;2.CrossRefGoogle Scholar
  12. Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 1303–1315, <1303:WDZFVI>2.0.CO;2.CrossRefGoogle Scholar
  13. Hu, C. D., Q. G. Wu, S. Yang, Y. H. Yao, D. Chan, Z. N. Li, and K. Q. Deng, 2016: A linkage observed between austral autumn Antarctic Oscillation and preceding Southern Ocean SST anomalies. J. Climate, 29, 2109–2122, CrossRefGoogle Scholar
  14. Hwang, Y. T., and D. M. W. Frierson, 2013: Link between the double–intertropical convergence zone problem and cloud biases over the Southern Ocean. Proceedings of the National Academy of the United States of America, 110, 4935–4940, CrossRefGoogle Scholar
  15. Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 2812–2827, CrossRefGoogle Scholar
  16. Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab–ocean experiments with a GCM. J. Climate, 21, 3521–3532, CrossRefGoogle Scholar
  17. Kendall, M. G. 1975. Rank Correlation Methods. 4th ed., Charles Griffin, London.Google Scholar
  18. Kidson, J. W., and I. G. Watterson, 1999: The structure and predictability of the “high-latitude mode” in the CSIRO9 general circulation model. J. Atmos. Sci., 56, 3859–3873,<3859:TSAPOT>2.0. CO;2.CrossRefGoogle Scholar
  19. Kucharski, F., and F. Molteni, 2003: On non-linearities in a forced North Atlantic Oscillation. Climate Dyn., 21, 677–687, CrossRefGoogle Scholar
  20. Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 2233–2256, <2233:AGRTES>2.0.CO;2.CrossRefGoogle Scholar
  21. Lefebvre, W., H. Goosse, R. Timmermann, and T. Fichefet, 2004: Influence of the southern annular mode on the sea ice–ocean system. J. Geophys. Res., 109, C09005, CrossRefGoogle Scholar
  22. Li, G., C. Y. Li, Y. K. Tan, and T. Bai, 2012: Seasonal evolution of dominant modes in South Pacific SST and relationship with ENSO. Adv. Atmos. Sci., 29, 1238–1248, CrossRefGoogle Scholar
  23. Li, J. P., and J. X. L. Wang, 2003: A modified zonal index and its physical sense. Geophys. Res. Lett., 30, 1632, Google Scholar
  24. Li, S. L., M. P. Hoerling, and S. L. Peng, 2006: Coupled oceanatmosphere response to Indian Ocean warmth. Geophys. Res. Lett., 33, L07713, Google Scholar
  25. Liu, J. P., and J. A. Curry, 2010: Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proceedings of the National Academy of the United States of America, 107, 1 4987–1 4992, CrossRefGoogle Scholar
  26. Liu, T., J. P. Li, and F. Zheng, 2015: Influence of the boreal autumn southern annular mode on winter precipitation over land in the Northern Hemisphere. J. Climate, 28, 8825–8839, CrossRefGoogle Scholar
  27. Liu, Z. Y., and H. J. Yang, 2003: Extratropical control of tropical climate, the atmospheric bridge and oceanic tunnel. Geophys. Res. Lett., 30,
  28. Liu, Z. Y., S. I. Shin, B. Otto–Bliesner, J. E. Kutzbach, E. C. Brady, and D. E. Lee, 2002: Tropical cooling at the last glacial maximum and extratropical ocean ventilation. Geophys. Res. Lett., 29, 48-1–48-4, Google Scholar
  29. Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 3312–3327, <3312:EZFFIT>2.0.CO;2.CrossRefGoogle Scholar
  30. Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245–259, CrossRefGoogle Scholar
  31. Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 1399–1421,<1399:ASOTIO>2.0.CO;2.CrossRefGoogle Scholar
  32. Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S. P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, CrossRefGoogle Scholar
  33. Nan, S. L., and J. P. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 2266. CrossRefGoogle Scholar
  34. North, G. R., T. L. Bell, R. F. Cahalan, F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706,<0699:SEITEO>2.0.CO;2.CrossRefGoogle Scholar
  35. Ogawa, F., N. E. Omrani, K. Nishii, H. Nakamura, and N. Keenlyside, 2015: Ozone-induced climate change propped up by the Southern Hemisphere oceanic front. Geophys. Res. Lett., 42, 10 056–10 063, CrossRefGoogle Scholar
  36. Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2016: Importance of midlatitude oceanic frontal zones for the annular mode variability: Interbasin differences in the southern annular mode signature. J. Climate, 29, 6179–6199, CrossRefGoogle Scholar
  37. Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers, 42, 641–673, CrossRefGoogle Scholar
  38. Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 1793–1814, CrossRefGoogle Scholar
  39. Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J. Climate, 19, 4457–4486, CrossRefGoogle Scholar
  40. Sen Gupta, A., and M. H. England, 2007: Coupled oceanatmosphere feedback in the southern annular mode. J. Climate, 20, 3677–3692, CrossRefGoogle Scholar
  41. Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389, 10480934.CrossRefGoogle Scholar
  42. Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Midlatitude afforestation shifts general circulation and tropical precipitation. Proceedings of the National Academy of Sciences of the United States of America, 109, 712–716, CrossRefGoogle Scholar
  43. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, CrossRefGoogle Scholar
  44. Theil, H., 1950: A rank-invariant method of linear and polynomial regression analysis. Nederl. Akad. Wetensch. Proc., 53, 386–392.Google Scholar
  45. Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016,<1000:AMITEC>2.0.CO;2.Google Scholar
  46. Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 4, 741–749, 1296.CrossRefGoogle Scholar
  47. Visbeck, M., E. P. Chassignet, R. G. Curry, T. L. Delworth, R. R. Dickson, and K. Krahmann, 2003: The Ocean’s response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, J. W. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck, Eds., American Geophysical Union, Google Scholar
  48. Wang, F., 2010a: Subtropical dipole mode in the Southern Hemisphere: A global view. Geophys. Res. Lett., 37, L10702, Google Scholar
  49. Wang, F. M., 2010b: Thermodynamic coupled modes in the tropical atmosphere-ocean: An analytical solution. J. Atmos. Sci., 67, 1667–1677, CrossRefGoogle Scholar
  50. Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13, 562–578,<0562:SMZWVA>2.0.CO;2.CrossRefGoogle Scholar
  51. Wu, L. X., Z. Y. Liu, C. Li, and Y. Sun, 2007: Extratropical control of recent tropical Pacific decadal climate variability: A relay teleconnection. Climate Dyn., 28, 99–112, CrossRefGoogle Scholar
  52. Wu, Q. G., and X. D. Zhang, 2011: Observed evidence of an impact of the Antarctic sea ice dipole on the Antarctic Oscillation. J. Climate, 24, 4508–4518, CrossRefGoogle Scholar
  53. Wu, Z. W., J. Dou, and H. Lin, 2015: Potential influence of the November–December Southern Hemisphere annular mode on the East Asian winter precipitation: a new mechanism. Climate Dyn., 44, 1215–1226, CrossRefGoogle Scholar
  54. Wu, Z. W., J. P. Li, B. Wang, and X. H. Liu, 2009: Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114, D11107, JD011501.CrossRefGoogle Scholar
  55. Xiao, B., Y. Zhang, X. Q. Yang, and Y. Nie, 2016: On the role of extratropical air-sea interaction in the persistence of the Southern Annular Mode. Geophys. Res. Lett., 43, 8806–8814, Scholar
  56. Yamazaki, K., and M. Watanabe, 2015: Effects of extratropical warming on ENSO amplitudes in an ensemble of a coupled GCM. Climate Dyn., 44, 679–693, CrossRefGoogle Scholar
  57. Yang, H. J., and L. Wang, 2008: Estimating the nonlinear response of tropical ocean to extratropical forcing in a coupled climate model. Geophys. Res. Lett., 35, L15705, CrossRefGoogle Scholar
  58. Yang, H. J., and L. Wang, 2011: Tropical oceanic response to extratropical thermal forcing in a coupled climate model: A comparison between the Atlantic and Pacific Oceans. J. Climate, 24, 3850–3866, CrossRefGoogle Scholar
  59. Zhang, Q., H. J. Yang, Y. F. Zhong, and D. X. Wang, 2005: An idealized study of the impact of extratropical climate change on El Ni˜no–Southern Oscillation. Climate Dyn., 25, 869–880, CrossRefGoogle Scholar
  60. Zheng, F., J. P. Li, L. Wang, F. Xie, and X. F. Li, 2015: Cross-seasonal influence of the December–February Southern Hemisphere annular mode on March–May meridional circulation and precipitation. J. Climate, 28, 6859–6881, CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fei Zheng
    • 1
  • Jianping Li
    • 2
    • 3
  • Fred Kucharski
    • 4
    • 5
  • Ruiqiang Ding
    • 1
    • 6
  • Ting Liu
    • 7
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina
  3. 3.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Earth System Physics SectionAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
  5. 5.Center of Excellence for Climate Change Research, Department of MeteorologyKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.Plateau Atmosphere and Environment Key Laboratory of Sichuan ProvinceChengdu University of Information TechnologyChengduChina
  7. 7.State Key Laboratory of Satellite Ocean Environment DynamicsSecond Institute of OceanographyHangzhouChina

Personalised recommendations