Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 6, pp 689–701 | Cite as

Regional Features and Seasonality of Land–Atmosphere Coupling over Eastern China

  • Chujie Gao
  • Haishan Chen
  • Shanlei Sun
  • Bei Xu
  • Victor Ongoma
  • Siguang Zhu
  • Hedi Ma
  • Xing Li
Original Paper

Abstract

Land–atmosphere coupling is a key process of the climate system, and various coupling mechanisms have been proposed before based on observational and numerical analyses. The impact of soil moisture (SM) on evapotranspiration (ET) and further surface temperature (ST) is an important aspect of such coupling. Using ERA-Interim data and CLM4.0 offline simulation results, this study further explores the relationships between SM/ST and ET to better understand the complex nature of the land–atmosphere coupling (i.e., spatial and seasonal variations) in eastern China, a typical monsoon area. It is found that two diagnostics of land–atmosphere coupling (i.e., SM–ET correlation and ST–ET correlation) are highly dependent on the climatology of SM and ST. By combining the SM–ET and ST–ET relationships, two “hot spots” of land–atmosphere coupling over eastern China are identified: Southwest China and North China. In Southwest China, ST is relatively high throughout the year, but SM is lowest in spring, resulting in a strong coupling in spring. However, in North China, SM is relatively low throughout the year, but ST is highest in summer, which leads to the strongest coupling in summer. Our results emphasize the dependence of land–atmosphere coupling on the seasonal evolution of climatic conditions and have implications for future studies related to land surface feedbacks.

Key words

soil moisture surface temperature land–atmosphere interaction evapotranspiration coupling 

摘 要

陆-气耦合是气候系统中的重要过程, 已经有大量基于观测和数值模拟的研究提出了各种耦合机制. 土壤湿度影响蒸散发进而引起地表温度异常是陆-气耦合研究中的重要组成部分. 利用ERA-Interim再分析资料和CLM4.0模拟结果, 本研究进一步探讨了土壤湿度/地表温度与蒸散发之间的关系, 以更好地理解中国东部地区陆-气耦合的复杂性质(即空间和季节变化). 本研究发现陆-气耦合的两个诊断量(即土壤湿度与蒸散发的相关系数和地表温度与蒸散发的相关系数)的变化主要依赖土壤湿度和地表温度的气候状态, 存在明显的空间变化和季节演变. 结合两个相关系数, 本研究确定了中国东部的两个陆-气耦合的关键区: 西南和华北地区. 在西南地区, 土壤湿润, 温度较高, 但在旱季的时候土壤湿度显著下降, 春季达到最低, 因此春季表现为较强的陆气耦合. 而在华北地区, 土壤湿度在年内维持在较低的水平, 仅在较为温暖的季节才有足够的能量将土壤中的水分蒸发至大气, 因此陆-气耦合强度随着温度的季节变化而发生改变, 夏季最强. 本文的研究结果强调了陆-气耦合对气候条件季节演变的依赖性, 为未来有关陆面过程反馈的研究提供一定的参考.

关键词

土壤湿度 地表温度 陆-气相互作用 蒸散发 耦合 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41625019 and 41605042), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151525), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. Balsamo, G., and Coauthors, 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrology and Earth System Sciences, 19, 389–407, https://doi.org/10.5194/hess-19-389-2015.CrossRefGoogle Scholar
  2. Bellucci, A., and Coauthors, 2015: Advancements in decadal climate predictability: The role of nonoceanic drivers. Rev. Geophys., 53(2), 165–202, https://doi.org/10.1002/2014RG 000473.CrossRefGoogle Scholar
  3. Cai, W. J., and T. Cowan, 2008: Evidence of impacts from rising temperature on inflows to the Murray-Darling Basin. Geophys. Res. Lett., 35, L07701, https://doi.org/10.1029/2008GL 033390.CrossRefGoogle Scholar
  4. Chen, H. S., M. M. Xiong, and W. Y. Sha, 2010: Simulation of land surface processes over China and its validation Part I: Soil temperature. Scientia Meteorologica Sinica, 30(5), 621–630, https://doi.org/10.3969/j.issn.1009-0827.2010.05. 008. (in Chinese)Google Scholar
  5. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi. org/10.1002/qj.828.CrossRefGoogle Scholar
  6. Dirmeyer, P. A., 2011: The terrestrial segment of soil moistureclimate coupling. Geophys. Res. Lett., 38, L16702, https://doi. org/10.1029/2011GL048268.CrossRefGoogle Scholar
  7. Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009: Precipitation, recycling, and land memory: An integrated analysis. Journal of Hydrometeorology, 10, 278–288, https://doi.org/10.1175/2008JHM1016.1.CrossRefGoogle Scholar
  8. Douville, H., P. Viterbo, J.-F. Mahfouf, and A. C. M. Beljaars, 2000: Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon. Wea. Rev., 128, 1733–1756, https://doi.org/10.1175/1520-0493(2000)128<1733:EOTOIA>2.0.CO;2.CrossRefGoogle Scholar
  9. Gao, C. J., H. S. Chen, B. Xu, and G. Zeng, 2014: Possible relationships among South China Sea SSTA, soil moisture anomalies in southwest China and summer precipitation in eastern China. Journal of Tropical Meteorology, 20(3), 228–235, https://doi.org/10.16555/j.1006-8775.2014.03.005.Google Scholar
  10. Ge, M. L., and Z. M. Feng, 2009: Population distribution of China based on GIS: Classification of population densities and curve of population gravity centers. Acta Geographica Sinica, 64(2), 202–210, https://doi.org/10.3321/j.issn:0375-5444.2009.02.007. (in Chinese)Google Scholar
  11. Guillod, B. P., B. Orlowsky, D. G. Miralles, A. J. Teuling, and S. I. Seneviratne, 2015: Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature Communications, 6, 6443, https://doi.org/10.1038/ncomms7443.CrossRefGoogle Scholar
  12. Guo, Q. Y., J. N. Cai, X. M. Shao, and W. Y. Sha, 2003: Interdecadal variability of East-Asian summer monsoon and its impact on the climate of China. Acta Geographica Sinica, 58(4), 569–576, https://doi.org/10.3321/j.issn:0375-5444.2003.04.011. (in Chinese)Google Scholar
  13. He, J. H., J. H. Ju, Z. P. Wen, J. M. Lü, and Q. H. Jin, 2007: A review of recent advances in research on Asian monsoon in China. Adv. Atmos. Sci., 24(6), 972–992, https://doi.org/10.1007/s00376-007-0972-2.CrossRefGoogle Scholar
  14. Hu, L. L., Y. L. Liu, Y. H. Ren, L. J. Yu, and C. Qu, 2015: Spatial change of population density boundary in mainland China in recent 80 years. Journal of Remote Sensing, 19(6), 928–934, https://doi.org/10.11834/jrs.20155016. (in Chinese)Google Scholar
  15. Hua, W. J., H. S. Chen, S. G. Zhu, S. L. Sun, M. Yu, and L. M. Zhou, 2013: Hotspots of the sensitivity of the land surface hydrological cycle to climate change. Chinese Science Bulletin, 58(30), 3682–3688, https://doi.org/10.1007/s11434-013-5846-7.CrossRefGoogle Scholar
  16. Jiang, J., D. B. Jiang, and Y. H. Lin, 2015: Monsoon area and precipitation over China for 1961–2009. Chinese Journal of Atmospheric Sciences, 39(4), 722–730, https://doi.org/10.3878/j.issn.1006-9895.1410.14195. (in Chinese)Google Scholar
  17. Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. Journal of Hydrometeorology, 2, 558–570, https://doi.org/10.1175/1525-7541(2001)002<0558: SMMICM>2.0.CO;2.CrossRefGoogle Scholar
  18. Koster, R. D., S. D. Schubert, and M. J. Suarez, 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 3331–3341, https://doi.org/10.1175/2008JCLI2718.1.CrossRefGoogle Scholar
  19. Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217.CrossRefGoogle Scholar
  20. Koster, R. D., and Coauthors, 2006: GLACE: The global land atmosphere coupling experiment. Part I: Overview. Journal of Hydrometeorology, 7, 590–610, https://doi.org/10.1175/JHM510.1.Google Scholar
  21. Lai, X., J. Wen, S. X. Cen, H. Q. Song, H. Tian, X. K. Shi, Y. He, and X. Huang, 2014: Numerical simulation and evaluation study of soil moisture over China by using CLM4.0 model. Chinese J. Atmos. Sci., 38(3), 499–512, https://doi.org/10.3878/j.issn.1006-9895.1401.13194. (in Chinese)Google Scholar
  22. Li, M. X., Z. G. Ma, and G. Y. Niu, 2011: Modeling spatial and temporal variations in soil moisture in China. Chinese Science Bulletin, 56(17), 1809–1820, https://doi.org/10.1007/s11434-011-4493-0.CrossRefGoogle Scholar
  23. Liu, L., R. H. Zhang, and Z. Y. Zuo, 2014: Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China. J. Geophys. Res. Atmos., 119, 54–64, https://doi.org/10.1002/2013JD020940.CrossRefGoogle Scholar
  24. Ma, Z. G., and C. B. Fu, 2005: Decadal variations of arid and semi-arid boundary in China. Chinese Journal of Geophysics, 48(3), 519–525, https://doi.org/10.3321/j.issn:0001-5733.2005.03.008. (in Chinese)Google Scholar
  25. Mahfouf, J.-F., P. Viterbo, H. Douville, A. C. M. Beljaars, and S. Saarinen, 2000: A revised land-surface analysis scheme in the integrated forecasting system. ECMWF Newsletter, 88, 8–13.Google Scholar
  26. Mei, R., and G. L. Wang, 2012: Summer land-atmosphere coupling strength in the United States: Comparison among observations, reanalysis data, and numerical models. Journal of Hydrometeorology, 13, 1010–1022, https://doi.org/10.1175/JHM-D-11-075.1.CrossRefGoogle Scholar
  27. Meng, L., D. Long, S. M. Quiring, and Y. J. Shen, 2014: Statistical analysis of the relationship between spring soil moisture and summer precipitation in East China. International Journal of Climatology, 34(5), 1511–1523, https://doi.org/10.1002/joc.3780.CrossRefGoogle Scholar
  28. Nicholls, N., 2004: The changing nature of Australian droughts. Climatic Change, 63(3), 323–336, https://doi.org/10.1023/B:CLIM.0000018515.46344.6d.CrossRefGoogle Scholar
  29. Oki, T., and S. Kanae, 2006: Global hydrological cycles and world water resources. Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845.CrossRefGoogle Scholar
  30. Ruscica, R. C., A. A. Sörensson, and C. G. Menéndez, 2014: Hydrological links in Southeastern South America: Soil moisture memory and coupling within a hot spot. International Journal of Climatology, 34, 3641–3653, https://doi.org/10.1002/joc.3930.CrossRefGoogle Scholar
  31. Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006a: Land atmosphere coupling and climate change in Europe. Nature, 443, 205–209, https://doi.org/10.1038/nature05095.CrossRefGoogle Scholar
  32. Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004.CrossRefGoogle Scholar
  33. Seneviratne, S. I., and Coauthors, 2006b: Soil moisture memory in AGCM simulations: Analysis of Global Land-Atmosphere Coupling Experiment (GLACE) Data. Journal of Hydrometeorology, 7, 1090–1112, https://doi.org/10.1175/JHM533.1.CrossRefGoogle Scholar
  34. Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year-high-resolution global dataset of meteorological forcing for land surface modeling. J. Climate, 19(13), 3088–3111, https://doi.org/10.1175/JCLI3790.1.CrossRefGoogle Scholar
  35. Spennemann, P. C., and A. C. Saulo, 2015: An estimation of the land-atmosphere coupling strength in South America using the Global Land Data Assimilation System. International Journal of Climatology, 35, 4151–4166, https://doi.org/10.1002/joc.4274.CrossRefGoogle Scholar
  36. Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90(3), 311–323, https://doi.org/10.1175/2008BAMS2634.1.CrossRefGoogle Scholar
  37. Tuttle, S., and G. Salvucci, 2016: Empirical evidence of contrasting soil moisture-precipitation feedbacks across the United States. Science, 352(6287), 825–828, https://doi.org/10.1126/science.aaa7185.CrossRefGoogle Scholar
  38. van den Hurk, B. J. J. M., P. Viterbo, A. C. M. Beljaars, and A. K. Betts, 2000: Offline validation of the ERA40 surface scheme. ECMWF Technical Memorandum No.295, 1–42.Google Scholar
  39. Wei, J. F., and P. A. Dirmeyer, 2012: Dissecting soil moistureprecipitation coupling. Geophys. Res. Lett., 39, L19711, https://doi.org/10.1029/2012GL053038.CrossRefGoogle Scholar
  40. Wei, J. F., P. A. Dirmeyer, and Z. C. Guo, 2008: Sensitivities of soil wetness simulation to uncertainties in precipitation and radiation. Geophys. Res. Lett., 35, L15703, https://doi.org/10.1029/2008GL034494.CrossRefGoogle Scholar
  41. Wei, J. F., P. A. Dirmeyer, M. G. Bosilovich, and R. G. Wu, 2012: Water vapor sources for Yangtze River Valley rainfall: Climatology, variability, and implications for rainfall forecasting. J. Geophys. Res., 117, D05126, https://doi.org/10.1029/2011JD016902.Google Scholar
  42. Wu, L. Y., and J. Y. Zhang, 2013: Asymmetric effects of soil moisture on mean daily maximum and minimum temperatures over eastern China. Meteor. Atmos. Phys., 122, 199–213, https://doi.org/10.1007/s00703-013-0284-2.CrossRefGoogle Scholar
  43. Wu, S. H., Y. H. Yin, D. Zheng, and Q. Y. Yang, 2005: Aridity/humidity status of land surface in China during the last three decades. Science in China Series D: Earth Sciences, 48(9), 1510–1518, https://doi.org/10.1360/04yd0009.CrossRefGoogle Scholar
  44. Wu, W. R., and R. E. Dickinson, 2004: Time scales of layered soil moisture memory in the context of land-atmosphere interaction. J. Climate, 17, 2752–2764, https://doi.org/10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.CrossRefGoogle Scholar
  45. Xiong, M. M., H. S. Chen, and M. Yu, 2011: Simulation of land surface processes over China and its validation. Part II: Soil moisture. Scientia Meteorologica Sinica, 31(1), 1–10, https://doi.org/10.3969/j.issn.1009-0827.2011.01.001. (in Chinese)Google Scholar
  46. Yin, D. Q., M. L. Roderick, G. Leech, F. B. Sun, and Y. F. Huang, 2014a: The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett., 41, 7891–7897, https://doi.org/10.1002/2014 GL062039.CrossRefGoogle Scholar
  47. Yin, J. F., X. W. Zhan, Y. F. Zheng, J. C. Liu, C. R. Hain, and L. Fang, 2014b: Impact of quality control of satellite soil moisture data on their assimilation into land surface model. Geophys. Res. Lett., 41(20), 7159–7166, https://doi.org/10.1002/2014gl060659.CrossRefGoogle Scholar
  48. Yin, J. F., and Coauthors, 2015: An assessment of impacts of land-cover changes on root-zone soil moisture. Int. J. Remote Sens., 36(24), 6116–6134, https://doi.org/10.1080/01431161. 2015.1111539.CrossRefGoogle Scholar
  49. Zhang, C. J., Y. M. Liao, J. Q. Duan, Y. L. Song, D. P. Huang, and S. Wang, 2016: The progresses of dry-wet climate divisional research in China. Climate Change Research, 12(4), 261–267, https://doi.org/10.12006/j.issn.1673-1719.2015.191. (in Chinese)Google Scholar
  50. Zhang, J. Y., and W. J. Dong, 2010: Soil moisture influence on summertime surface air temperature over East Asia. Theor. Appl. Climatol., 100, 221–226, https://doi.org/10.1007/s00704-009-0236-4.CrossRefGoogle Scholar
  51. Zhang, J. Y., W. C. Wang, and J. F. Wei, 2008a: Assessing land atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113, D17119, https://doi.org/10.1029/2008JD009807.CrossRefGoogle Scholar
  52. Zhang, J. Y., W. C. Wang, and L. R. Leung, 2008b: Contribution of land-atmosphere coupling to summer climate variability over the contiguous United States. J. Geophys. Res., 113, D22109, https://doi.org/10.1029/2008JD010136.CrossRefGoogle Scholar
  53. Zhang, J. Y., W. C. Wang, and L. Y. Wu, 2009: Land-atmosphere coupling and diurnal temperature range over the contiguous United States. Geophys. Res. Lett., 36, L06706, https://doi.org/10.1029/2009GL037505.Google Scholar
  54. Zhang, J. Y., L. Y. Wu, and W. J. Dong, 2011: Land-atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res., 116, D05117, https://doi.org/10.1029/2010 JD014714.CrossRefGoogle Scholar
  55. Zhang, R. H., and Z. Y. Zuo, 2011: Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Climate, 24, 3309–3322, https://doi.org/10.1175/2011JCLI4084.1.CrossRefGoogle Scholar
  56. Zhang, W. J., T. J. Zhou, and R. C. Yu, 2008c: Spatial distribution and temporal variation of soil moisture over China Part I: Multi-data inter-comparison. Chinese Journal of Atmospheric Sciences, 32, 581–597, https://doi.org/10.3878/j.issn.1006-9895.2008.03.15. (in Chinese)Google Scholar
  57. Zhang, W. L., J. Y. Zhang, and G. Z. Fan, 2014: Dominant modes of dry- and wet-season precipitation in southwestern China. Chinese Journal of Atmospheric Sciences, 38(3), 590–602, https://doi.org/10.3878/j.issn.1006-9895.2013.13156. (in Chinese)Google Scholar
  58. Zhu, S. G., H. S. Chen, and J. Zhou, 2013: Simulations of global land surface conditions in recent 50 years with three versions of NCAR Community Land Models and their comparative analysis. Transactions of Atmospheric Science, 36(4), 434–446, https://doi.org/10.13878/j.cnki.dqkxxb.2013.04.007. (in Chinese)Google Scholar
  59. Zittis, G., P. Hadjinicolaou, and J. Lelieveld, 2013: Land-Atmosphere coupling: The feedback of soil moisture into surface temperature in Eastern Mediterranean and Middle East. Advances in Meteorology, Climatology and Atmospheric Physics, C. G. Helmis, and P. T. Nastos, Eds., Springer, 833–839, https://doi.org/10.1007/978-3-642-29172-2 117.CrossRefGoogle Scholar
  60. Zuo, Z. Y., and R. H. Zhang, 2007: The spring soil moisture and the summer rainfall in eastern China. Chinese Science Bulletin, 52, 3310–3312, https://doi.org/10.1007/s11434-007-0442-3.CrossRefGoogle Scholar
  61. Zuo, Z. Y., and R. H. Zhang, 2009: Temporal and spatial features of the soil moisture in boreal spring in eastern China. Science in China Series D: Earth Sciences, 52(2), 269–278, https://doi.org/10.1007/s11430-009-0011-5.CrossRefGoogle Scholar
  62. Zuo, Z. Y., and R. H. Zhang, 2016: Influence of soil moisture in Eastern China on the East Asian summer monsoon. Adv. Atmos. Sci., 33(2), 151–163, https://doi.org/10.1007/s00376-015-5024-8.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chujie Gao
    • 1
    • 2
  • Haishan Chen
    • 1
    • 2
  • Shanlei Sun
    • 1
    • 2
  • Bei Xu
    • 1
    • 2
  • Victor Ongoma
    • 3
  • Siguang Zhu
    • 1
    • 2
  • Hedi Ma
    • 1
    • 2
  • Xing Li
    • 1
    • 2
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/International Joint Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information Science and TechnologyNanjingChina
  2. 2.College of Atmospheric ScienceNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Department of MeteorologySouth Eastern Kenya UniversityKituiKenya

Personalised recommendations