Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 6, pp 645–658 | Cite as

Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism

  • Jiapeng Miao
  • Tao Wang
  • Huijun Wang
  • Jianqi Sun
Original Paper

Abstract

In order to examine the response of the tropical Pacific Walker circulation (PWC) to strong tropical volcanic eruptions (SVEs), we analyzed a three-member long-term simulation performed with HadCM3, and carried out four additional CAM4 experiments. We found that the PWC shows a significant interannual weakening after SVEs. The cooling effect from SVEs is able to cool the entire tropics. However, cooling over the Maritime Continent is stronger than that over the central-eastern tropical Pacific. Thus, non-uniform zonal temperature anomalies can be seen following SVEs. As a result, the sea level pressure gradient between the tropical Pacific and the Maritime Continent is reduced, which weakens trade winds over the tropical Pacific. Therefore, the PWC is weakened during this period. At the same time, due to the cooling subtropical and midlatitude Pacific, the Intertropical Convergence Zone (ITCZ) and South Pacific convergence zone (SPCZ) are weakened and shift to the equator. These changes also contribute to the weakened PWC. Meanwhile, through the positive Bjerknes feedback, weakened trade winds cause El Niño-like SST anomalies over the tropical Pacific, which in turn further influence the PWC. Therefore, the PWC significantly weakens after SVEs. The CAM4 experiments further confirm the influences from surface cooling over the Maritime Continent and subtropical/midlatitude Pacific on the PWC. Moreover, they indicate that the stronger cooling over the Maritime Continent plays a dominant role in weakening the PWC after SVEs. In the observations, a weakened PWC and a related El Niño-like SST pattern can be found following SVEs.

Key words

Pacific Walker circulation strong tropical volcanic eruptions cooling effect trade winds 

摘 要

为了研究太平洋沃克环流(PWC)对热带强火山喷发(SVEs)的响应, 本文分析了耦合模式HadCM3模拟的3组火山强迫数值试验结果. 结果表明, SVEs对PWC的年际变化具有重要的调制作用. 在SVEs之后的一年里, 火山气溶胶制冷效应造成整个热带地区低层显著降温, 其中海洋性大陆地区及周缘海域降温比热带中东太平洋更强, 进而导致热带太平洋东西向海平面气压梯度减小, 信风减弱. 同时, 副热带和中纬度太平洋海表温度变冷导致热带辐合带和南太平洋辐合带减弱并且向赤道位移. 在上述两者的共同作用下, PWC在火山喷发之后显著减弱. 此外, 通过皮叶克尼斯反馈作用, 信风的减弱导致类厄尔尼诺型海温异常, 这反过来进一步减弱了信风及PWC. 我们进一步开展的4组CAM4敏感性试验证明由火山强迫导致的海洋性大陆及周缘海域表层强降温对PWC的年际减弱起着主导性作用. 在观测资料中, 我们也发现了SVEs之后类似的PWC减弱现象及过程.

关键词

沃克环流 热带强火山喷发 降温效应 信风 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the two anonymous reviewers and editor for their valuable comments and suggestions, which helped improve the quality of this paper significantly. This research was supported by the National Key R&D Program of China (Grant No. 2016YFA0600701), the National Natural Science Foundation of China (Grant Nos. 41661144005, 41575086 and 41320104007), and the CAS–PKU Joint Research Program. The authors are grateful to Dr. Schurer A. P. for providing the coupled model output.

Supplementary material

376_2017_7134_MOESM1_ESM.pdf (607 kb)
Electronic Supplementary Material to: Interannual Weakening of the Tropical PacificWalker Circulation Due to Strong Tropical Volcanism

References

  1. Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274–278, https://doi.org/10.1038/nature02101.CrossRefGoogle Scholar
  2. Bayr, T., and D. Dommenget, 2013: The tropospheric land–sea warming contrast as the driver of tropical sea level pressure changes. J. Climate, 26, 1387–1402, https://doi.org/10.1175/jcli-d-11-00731.1.CrossRefGoogle Scholar
  3. Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.CrossRefGoogle Scholar
  4. Broccoli A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005gl024546.CrossRefGoogle Scholar
  5. Burgman, R. J., A. C. Clement, C. M. Mitas, J. Chen, and K. Esslinger, 2008: Evidence for atmospheric variability over the Pacific on decadal timescales. Geophys. Res. Lett., 35, L01704, https://doi.org/10.1029/2007GL031830.CrossRefGoogle Scholar
  6. Callaghan, J., and S. B. Power, 2011: Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Climate Dyn., 37, 647–662, https://doi.org/10.1007/s00382-010-0883-2.CrossRefGoogle Scholar
  7. Cattle, H., and J. Crossley, 1995: Modelling arctic climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 352, 201–213, https://doi.org/10.1098/rsta.1995.0064.CrossRefGoogle Scholar
  8. Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 2190–2196, https://doi.org/10.1175/1520-0442(1996)009 <2190:AODT>2.0.CO;2.CrossRefGoogle Scholar
  9. Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175–190, https://doi.org/10.1175/bams-87-2-175.CrossRefGoogle Scholar
  10. Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776.CrossRefGoogle Scholar
  11. Cox, M. D., 1984: A primitive equation 3-dimensional model of the ocean. GFDL Ocean Group Technical Rep 1, 143 pp.Google Scholar
  12. Crowley, T. J., G. A. Zielinski, B. M. Vinther, R. Udisti, K. Kreutz, J. Cole-Dai, and E. Castellano, 2008: Volcanism and the little ice age. PAGES News, 16, 22–23.CrossRefGoogle Scholar
  13. Cui, X. D., Y. Q. Gao, and J. Q. Sun, 2014: The response of the East Asian summer monsoon to strong tropical volcanic eruptions. Adv. Atmos. Sci., 31, 1245–1255, https://doi.org/10.1007/s00376-014-3239-8.CrossRefGoogle Scholar
  14. Deser, C., A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, https://doi.org/10.1029/2010GL043321.CrossRefGoogle Scholar
  15. DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 4873–4892, https://doi.org/10.1175/2009JCLI2982.1.CrossRefGoogle Scholar
  16. Ding, Y. N., J. A. Carton, G. A. Chepurin, G. Stenchikov, A. Robock, L. T. Sentman, and J. P. Krasting, 2014: Ocean response to volcanic eruptions in coupled model intercomparison project 5 simulations. J. Geophys. Res., 119, 5622–5637. https://doi.org/10.1002/2013JC009780.CrossRefGoogle Scholar
  17. Dong, B. W., and R. Y. Lu, 2013: Interdecadal enhancement of the walker circulation over the tropical pacific in the late 1990s. Adv. Atmos. Sci., 30, 247–262, https://doi.org/10.1007/s00376-012-2069-9.CrossRefGoogle Scholar
  18. Emile-Geay, J., R. Seager, M. A. Cane, E. R. Cook, and G. H. Haug, 2008: Volcanoes and ENSO over the past millennium. J. Climate, 21, 3134–3148, https://doi.org/10.1175/2007 JCLI1884.1.CrossRefGoogle Scholar
  19. Garcia, S. R., and M. T. Kayano, 2008: Climatological aspects of Hadley, Walker and monsoon circulations in two phases of the Pacific Decadal Oscillation. Theor. Appl. Climatol., 91, 117–127, https://doi.org/10.1007/s00704-007-0301-9.CrossRefGoogle Scholar
  20. Gent, P. R., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011jcli4083.1.CrossRefGoogle Scholar
  21. Gleckler, P. J., T. M. L. Wigley, B. D. Santer, J. M. Gregory, K. AchutaRao, and K. E. Taylor, 2006: Volcanoes and climate: Krakatoa’s signature persists in the ocean. Nature, 439, 675–675, https://doi.org/10.1038/439675a.CrossRefGoogle Scholar
  22. Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147–168, https://doi.org/10.1007/s003820050010.CrossRefGoogle Scholar
  23. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1.CrossRefGoogle Scholar
  24. Hibler III, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815–846. https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.CrossRefGoogle Scholar
  25. Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 57–75, https://doi.org/10.1175/jcli-d-12-00837.1.CrossRefGoogle Scholar
  26. Johns, T. C., R. E. Carnell, J. F. Crossley, J. F. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett, and R. A. Wood, 1997: The second Hadley centre coupled ocean-atmosphere GCM: Model description, spinup and validation. Climate Dyn., 13, 103–134, https://doi.org/10.1007/s003820050155.CrossRefGoogle Scholar
  27. Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical pacific to increased CO2 in a coupled oceanatmosphere model. J. Climate, 8, 2181–2199, https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.CrossRefGoogle Scholar
  28. Lai, A. W. C., M. Herzog, and H. F. Graf, 2015: Two key parameters for the El Niño continuum: Zonal wind anomalies and Western Pacific subsurface potential temperature. Climate Dyn., 45, 3461–3480. https://doi.org/10.1007/s00382-015-2550-0.CrossRefGoogle Scholar
  29. Lestari, R. K., M. Watanabe, Y. Imada, H. Shiogama, R. D. Field, T. Takemura, and M. Kimoto, 2014: Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming. Environmental Research Letters, 9, 104010, https://doi.org/10.1088/1748-9326/9/10/104010.CrossRefGoogle Scholar
  30. L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of theWalker circulation across the tropical Pacific. Nat. Clim. Change, 3, 571–576, https://doi.org/10.1038/NCLIMATE1840.CrossRefGoogle Scholar
  31. Li, T., L. Zhang, and H. Murakami, 2015: Strengthening of the walker circulation under globalwarming in an aqua-planet general circulation model simulation. Adv. Atmos. Sci., 32, 1473–1480, https://doi.org/10.1007/s00376-015-5033-7.CrossRefGoogle Scholar
  32. Lim, H.-G., S.-W. Yeh, J.-S. Kug, Y.-G. Park, J.-H. Park, R. Park, and C.-K. Song, 2016: Threshold of the volcanic forcing that leads the El Niño-like warming in the last millennium: Results from the ERIK simulation. Climate Dyn., 46, 3725–3736, https://doi.org/10.1007/s00382-015-2799-3.CrossRefGoogle Scholar
  33. Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Y. Wang, 2016: Global monsoon precipitation responses to large volcanic eruptions. Sci Rep, 6, 24331, https://doi.org/10.1038/srep24331.CrossRefGoogle Scholar
  34. Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. U. S. A., 109, 18 701–18 706, https://doi.org/10.1073/pnas.1210239109.CrossRefGoogle Scholar
  35. Ma, S. M., and T. J. Zhou, 2016: Robust strengthening and westward shift of the tropical pacific walker circulation during 1979–2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Climate, 29, 3097–3118, https://doi.org/10.1175/Jcli-D-15-0398.1.CrossRefGoogle Scholar
  36. Maher, N., S. McGregor, M. H. England, and A. S. Gupta, 2015: Effects of volcanism on tropical variability. Geophys. Res. Lett., 42, 6024–6033, https://doi.org/10.1002/2015 GL064751.CrossRefGoogle Scholar
  37. Man, W. M., T. J. Zhou, and J. H. Jungclaus, 2014: Effects of large volcanic eruptions on global summer climate and east Asian monsoon changes during the last millennium: Analysis of MPI-ESM simulations. J. Climate, 27, 7394–7409, https://doi.org/10.1175/Jcli-D-13-00739.1.CrossRefGoogle Scholar
  38. McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888–892, https://doi.org/10.1038/NCLIMATE2330.CrossRefGoogle Scholar
  39. Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382, 56–60, https://doi.org/10.1038/382056a0.CrossRefGoogle Scholar
  40. Meng, Q. J., M. Latif, W. Park, N. S. Keenlyside, V. A. Semenov, and T. Martin, 2012: Twentieth century Walker Circulation change: Data analysis and model experiments. Climate Dyn., 38, 1757–1773, https://doi.org/10.1007/s00382-011-1047-8.CrossRefGoogle Scholar
  41. Miao, J. P., T. Wang, Y. L. Zhu, J. Z. Min, H. J. Wang, and D. Guo, 2016: Response of the East Asian winter monsoon to strong tropical volcanic eruptions. J. Climate, 29, 5041–5057, https://doi.org/10.1175/JCLI-D-15-0600.1.CrossRefGoogle Scholar
  42. Ohba, M., H. Shiogama, T. Yokohata, and M. Watanabe, 2013: Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J. Climate, 26, 5169–5182, https://doi.org/10.1175/jcli-d-12-00471.1.CrossRefGoogle Scholar
  43. Otterå, O. H., 2008: Simulating the effects of the 1991 Mount Pinatubo volcanic eruption using the ARPEGE atmosphere general circulation model. Adv. Atmos. Sci., 25, 213–226, https://doi.org/10.1007/s00376-008-0213-3.CrossRefGoogle Scholar
  44. Otterå, O. H., M. Bentsen, H. Drange, and L. L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3, 688–694, https://doi.org/10.1038/NGEO955.CrossRefGoogle Scholar
  45. Pausata, F. S. R., L. Chafik, R. Caballero, and D. S. Battisti, 2015: Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl. Acad. Sci. U. S. A., 112, 13 784–13 788, https://doi.org/10.1073/pnas.1509153112.CrossRefGoogle Scholar
  46. Peng, Y. B., C. M. Shen, W.-C. Wang, and Y. Xu, 2010: Response of summer precipitation over eastern China to large volcanic eruptions. J. Climate, 23, 818–824, https://doi.org/10.1175/2009JCLI2950.1.CrossRefGoogle Scholar
  47. Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.Google Scholar
  48. Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123–146, https://doi.org/10.1007/s003820050009.CrossRefGoogle Scholar
  49. Power, S. B., and G. Kociuba, 2011: What caused the observed twentieth-century weakening of the walker circulation? J. Climate, 24, 6501–6514, https://doi.org/10.1175/2011JCLI 4101.1.CrossRefGoogle Scholar
  50. Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998RG000054.CrossRefGoogle Scholar
  51. Robock, A., and J. P. Mao, 1995: The volcanic signal in surface temperature observations. J. Climate, 8, 1086–1103, https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2.CrossRefGoogle Scholar
  52. Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the southern oscillation. J. Climate, 2, 268–284, https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.CrossRefGoogle Scholar
  53. Sandeep, S., F. Stordal, P. D. Sardeshmukh, and G. P. Compo, 2014: Pacific Walker Circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103–117, https://doi.org/10.1007/s00382-014-2135-3.CrossRefGoogle Scholar
  54. Semtner, A. J., Jr., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379–389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.CrossRefGoogle Scholar
  55. Schurer, A. P., S. F. B. Tett, and G. C. Hegerl, 2014: Small influence of solar variability on climate over the past millennium. Nat. Geosci., 7, 104–108, https://doi.org/10.1038/NGEO2040.CrossRefGoogle Scholar
  56. Schurer, A. P., S. F. B. Tett, M. Mineter, and G. C. Hegerl, 2013: Euroclim500—Causes of change in European mean and extreme climate over the past 500 years: Climate variable output from HadCM3 numerical model. NCAS British Atmospheric Data Centre.Google Scholar
  57. Shindell, D. T., G. A. Schmidt, M. E. Mann, and G. Faluvegi, 2004: Dynamic winter climate response to large tropical volcanic eruptions since 1600. J. Geophys. Res., 109, D05104, https://doi.org/10.1029/2003JD004151.CrossRefGoogle Scholar
  58. Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, https://doi.org/10.1175/2007jcli2100.1.CrossRefGoogle Scholar
  59. Sohn, B. J., S.-W. Yeh, J. Schmetz, and H.-J. Song, 2013: Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Climate Dyn., 40, 1721–1732, https://doi.org/10.1007/s00382-012-1484-z.CrossRefGoogle Scholar
  60. Stenchikov, G. L., I. Kirchner, A. Robock, H.-F. Graf, J. C. AntuñA, R. G. Grainger, A. Lambert, and L. Thomason, 1998: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 103, 13 837–13 857, https://doi.org/10.1029/98JD00693.CrossRefGoogle Scholar
  61. Stevenson, S., B. Otto-Bliesner, J. Fasullo, and E. Brady, 2016: “El Niño Like” hydroclimate responses to last millennium volcanic eruptions. J. Climate, 29, 2907–2921, https://doi.org/10.1175/jcli-d-15-0239.1.CrossRefGoogle Scholar
  62. Tanaka, H. L., N. Ishizaki, and A. Kitoh, 2004: Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus A, 56, 250–269, https://doi.org/10.3402/tellusa.v56i3.14410.CrossRefGoogle Scholar
  63. Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340, https://doi.org/10.1175/JCLI4258.1.CrossRefGoogle Scholar
  64. Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76, https://doi.org/10.1038/nature04744.CrossRefGoogle Scholar
  65. Veiga, J. A. P., V. B. Rao, and S. H. Franchito, 2005: Heat and moisture budgets of the Walker circulation and associated rainfall anomalies during El Niño events. International Journal of Climatology, 25, 193–213, https://doi.org/10.1002/joc.1115.CrossRefGoogle Scholar
  66. Wang, T., O. H. Otterå, Y. Q. Gao, and H. J. Wang, 2012: The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions. Climate Dyn., 39, 2917–2936, https://doi.org/10.1007/s00382-012-1373-5.CrossRefGoogle Scholar
  67. Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 1190–1200, https://doi.org/10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2.CrossRefGoogle Scholar
  68. Williams, A. P., and C. Funk, 2011: A westward extension of the warm pool leads to a westward extension of theWalker circulation, drying eastern Africa. Climate Dyn., 37, 2417–2435, https://doi.org/10.1007/s00382-010-0984-y.CrossRefGoogle Scholar
  69. Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-Yr SST normals during 1871–2000. J. Climate, 16, 1601–1612, https://doi.org/10.1175/1520-0442-16.10.1601.CrossRefGoogle Scholar
  70. Zanchettin, D., C. Timmreck, H.-F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. H. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419–444, https://doi.org/10.1007/s00382-011-1167-1.CrossRefGoogle Scholar
  71. Zhang, L., and T. Li, 2017: Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the walker circulation changes under global warming. Climate Dyn., 48, 987–997, https://doi.org/10.1007/s00382-016-3123-6.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiapeng Miao
    • 1
    • 5
  • Tao Wang
    • 1
    • 2
  • Huijun Wang
    • 1
    • 3
    • 4
  • Jianqi Sun
    • 1
    • 2
    • 5
  1. 1.Nansen-Zhu International Research Center, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Joint Laboratory for Climate and Environmental ChangeChengdu University of Information TechnologyChengduChina
  3. 3.Key Laboratory of Meteorological DisasterNanjing University of Information Science and TechnologyNanjingChina
  4. 4.Climate Change Research CenterChinese Academy of SciencesBeijingChina
  5. 5.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations