Skip to main content
Log in

Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In order to examine the response of the tropical Pacific Walker circulation (PWC) to strong tropical volcanic eruptions (SVEs), we analyzed a three-member long-term simulation performed with HadCM3, and carried out four additional CAM4 experiments. We found that the PWC shows a significant interannual weakening after SVEs. The cooling effect from SVEs is able to cool the entire tropics. However, cooling over the Maritime Continent is stronger than that over the central-eastern tropical Pacific. Thus, non-uniform zonal temperature anomalies can be seen following SVEs. As a result, the sea level pressure gradient between the tropical Pacific and the Maritime Continent is reduced, which weakens trade winds over the tropical Pacific. Therefore, the PWC is weakened during this period. At the same time, due to the cooling subtropical and midlatitude Pacific, the Intertropical Convergence Zone (ITCZ) and South Pacific convergence zone (SPCZ) are weakened and shift to the equator. These changes also contribute to the weakened PWC. Meanwhile, through the positive Bjerknes feedback, weakened trade winds cause El Niño-like SST anomalies over the tropical Pacific, which in turn further influence the PWC. Therefore, the PWC significantly weakens after SVEs. The CAM4 experiments further confirm the influences from surface cooling over the Maritime Continent and subtropical/midlatitude Pacific on the PWC. Moreover, they indicate that the stronger cooling over the Maritime Continent plays a dominant role in weakening the PWC after SVEs. In the observations, a weakened PWC and a related El Niño-like SST pattern can be found following SVEs.

摘 要

为了研究太平洋沃克环流(PWC)对热带强火山喷发(SVEs)的响应, 本文分析了耦合模式HadCM3模拟的3组火山强迫数值试验结果. 结果表明, SVEs对PWC的年际变化具有重要的调制作用. 在SVEs之后的一年里, 火山气溶胶制冷效应造成整个热带地区低层显著降温, 其中海洋性大陆地区及周缘海域降温比热带中东太平洋更强, 进而导致热带太平洋东西向海平面气压梯度减小, 信风减弱. 同时, 副热带和中纬度太平洋海表温度变冷导致热带辐合带和南太平洋辐合带减弱并且向赤道位移. 在上述两者的共同作用下, PWC在火山喷发之后显著减弱. 此外, 通过皮叶克尼斯反馈作用, 信风的减弱导致类厄尔尼诺型海温异常, 这反过来进一步减弱了信风及PWC. 我们进一步开展的4组CAM4敏感性试验证明由火山强迫导致的海洋性大陆及周缘海域表层强降温对PWC的年际减弱起着主导性作用. 在观测资料中, 我们也发现了SVEs之后类似的PWC减弱现象及过程.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274–278, https://doi.org/10.1038/nature02101.

    Article  Google Scholar 

  • Bayr, T., and D. Dommenget, 2013: The tropospheric land–sea warming contrast as the driver of tropical sea level pressure changes. J. Climate, 26, 1387–1402, https://doi.org/10.1175/jcli-d-11-00731.1.

    Article  Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    Article  Google Scholar 

  • Broccoli A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005gl024546.

    Article  Google Scholar 

  • Burgman, R. J., A. C. Clement, C. M. Mitas, J. Chen, and K. Esslinger, 2008: Evidence for atmospheric variability over the Pacific on decadal timescales. Geophys. Res. Lett., 35, L01704, https://doi.org/10.1029/2007GL031830.

    Article  Google Scholar 

  • Callaghan, J., and S. B. Power, 2011: Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Climate Dyn., 37, 647–662, https://doi.org/10.1007/s00382-010-0883-2.

    Article  Google Scholar 

  • Cattle, H., and J. Crossley, 1995: Modelling arctic climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 352, 201–213, https://doi.org/10.1098/rsta.1995.0064.

    Article  Google Scholar 

  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 2190–2196, https://doi.org/10.1175/1520-0442(1996)009 <2190:AODT>2.0.CO;2.

    Article  Google Scholar 

  • Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Amer. Meteor. Soc., 87, 175–190, https://doi.org/10.1175/bams-87-2-175.

    Article  Google Scholar 

  • Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776.

    Article  Google Scholar 

  • Cox, M. D., 1984: A primitive equation 3-dimensional model of the ocean. GFDL Ocean Group Technical Rep 1, 143 pp.

    Google Scholar 

  • Crowley, T. J., G. A. Zielinski, B. M. Vinther, R. Udisti, K. Kreutz, J. Cole-Dai, and E. Castellano, 2008: Volcanism and the little ice age. PAGES News, 16, 22–23.

    Article  Google Scholar 

  • Cui, X. D., Y. Q. Gao, and J. Q. Sun, 2014: The response of the East Asian summer monsoon to strong tropical volcanic eruptions. Adv. Atmos. Sci., 31, 1245–1255, https://doi.org/10.1007/s00376-014-3239-8.

    Article  Google Scholar 

  • Deser, C., A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, https://doi.org/10.1029/2010GL043321.

    Article  Google Scholar 

  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 4873–4892, https://doi.org/10.1175/2009JCLI2982.1.

    Article  Google Scholar 

  • Ding, Y. N., J. A. Carton, G. A. Chepurin, G. Stenchikov, A. Robock, L. T. Sentman, and J. P. Krasting, 2014: Ocean response to volcanic eruptions in coupled model intercomparison project 5 simulations. J. Geophys. Res., 119, 5622–5637. https://doi.org/10.1002/2013JC009780.

    Article  Google Scholar 

  • Dong, B. W., and R. Y. Lu, 2013: Interdecadal enhancement of the walker circulation over the tropical pacific in the late 1990s. Adv. Atmos. Sci., 30, 247–262, https://doi.org/10.1007/s00376-012-2069-9.

    Article  Google Scholar 

  • Emile-Geay, J., R. Seager, M. A. Cane, E. R. Cook, and G. H. Haug, 2008: Volcanoes and ENSO over the past millennium. J. Climate, 21, 3134–3148, https://doi.org/10.1175/2007 JCLI1884.1.

    Article  Google Scholar 

  • Garcia, S. R., and M. T. Kayano, 2008: Climatological aspects of Hadley, Walker and monsoon circulations in two phases of the Pacific Decadal Oscillation. Theor. Appl. Climatol., 91, 117–127, https://doi.org/10.1007/s00704-007-0301-9.

    Article  Google Scholar 

  • Gent, P. R., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011jcli4083.1.

    Article  Google Scholar 

  • Gleckler, P. J., T. M. L. Wigley, B. D. Santer, J. M. Gregory, K. AchutaRao, and K. E. Taylor, 2006: Volcanoes and climate: Krakatoa’s signature persists in the ocean. Nature, 439, 675–675, https://doi.org/10.1038/439675a.

    Article  Google Scholar 

  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147–168, https://doi.org/10.1007/s003820050010.

    Article  Google Scholar 

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1.

    Article  Google Scholar 

  • Hibler III, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815–846. https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2.

    Article  Google Scholar 

  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 57–75, https://doi.org/10.1175/jcli-d-12-00837.1.

    Article  Google Scholar 

  • Johns, T. C., R. E. Carnell, J. F. Crossley, J. F. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett, and R. A. Wood, 1997: The second Hadley centre coupled ocean-atmosphere GCM: Model description, spinup and validation. Climate Dyn., 13, 103–134, https://doi.org/10.1007/s003820050155.

    Article  Google Scholar 

  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical pacific to increased CO2 in a coupled oceanatmosphere model. J. Climate, 8, 2181–2199, https://doi.org/10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    Article  Google Scholar 

  • Lai, A. W. C., M. Herzog, and H. F. Graf, 2015: Two key parameters for the El Niño continuum: Zonal wind anomalies and Western Pacific subsurface potential temperature. Climate Dyn., 45, 3461–3480. https://doi.org/10.1007/s00382-015-2550-0.

    Article  Google Scholar 

  • Lestari, R. K., M. Watanabe, Y. Imada, H. Shiogama, R. D. Field, T. Takemura, and M. Kimoto, 2014: Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming. Environmental Research Letters, 9, 104010, https://doi.org/10.1088/1748-9326/9/10/104010.

    Article  Google Scholar 

  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of theWalker circulation across the tropical Pacific. Nat. Clim. Change, 3, 571–576, https://doi.org/10.1038/NCLIMATE1840.

    Article  Google Scholar 

  • Li, T., L. Zhang, and H. Murakami, 2015: Strengthening of the walker circulation under globalwarming in an aqua-planet general circulation model simulation. Adv. Atmos. Sci., 32, 1473–1480, https://doi.org/10.1007/s00376-015-5033-7.

    Article  Google Scholar 

  • Lim, H.-G., S.-W. Yeh, J.-S. Kug, Y.-G. Park, J.-H. Park, R. Park, and C.-K. Song, 2016: Threshold of the volcanic forcing that leads the El Niño-like warming in the last millennium: Results from the ERIK simulation. Climate Dyn., 46, 3725–3736, https://doi.org/10.1007/s00382-015-2799-3.

    Article  Google Scholar 

  • Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Y. Wang, 2016: Global monsoon precipitation responses to large volcanic eruptions. Sci Rep, 6, 24331, https://doi.org/10.1038/srep24331.

    Article  Google Scholar 

  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. U. S. A., 109, 18 701–18 706, https://doi.org/10.1073/pnas.1210239109.

    Article  Google Scholar 

  • Ma, S. M., and T. J. Zhou, 2016: Robust strengthening and westward shift of the tropical pacific walker circulation during 1979–2012: A comparison of 7 sets of reanalysis data and 26 CMIP5 models. J. Climate, 29, 3097–3118, https://doi.org/10.1175/Jcli-D-15-0398.1.

    Article  Google Scholar 

  • Maher, N., S. McGregor, M. H. England, and A. S. Gupta, 2015: Effects of volcanism on tropical variability. Geophys. Res. Lett., 42, 6024–6033, https://doi.org/10.1002/2015 GL064751.

    Article  Google Scholar 

  • Man, W. M., T. J. Zhou, and J. H. Jungclaus, 2014: Effects of large volcanic eruptions on global summer climate and east Asian monsoon changes during the last millennium: Analysis of MPI-ESM simulations. J. Climate, 27, 7394–7409, https://doi.org/10.1175/Jcli-D-13-00739.1.

    Article  Google Scholar 

  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4, 888–892, https://doi.org/10.1038/NCLIMATE2330.

    Article  Google Scholar 

  • Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382, 56–60, https://doi.org/10.1038/382056a0.

    Article  Google Scholar 

  • Meng, Q. J., M. Latif, W. Park, N. S. Keenlyside, V. A. Semenov, and T. Martin, 2012: Twentieth century Walker Circulation change: Data analysis and model experiments. Climate Dyn., 38, 1757–1773, https://doi.org/10.1007/s00382-011-1047-8.

    Article  Google Scholar 

  • Miao, J. P., T. Wang, Y. L. Zhu, J. Z. Min, H. J. Wang, and D. Guo, 2016: Response of the East Asian winter monsoon to strong tropical volcanic eruptions. J. Climate, 29, 5041–5057, https://doi.org/10.1175/JCLI-D-15-0600.1.

    Article  Google Scholar 

  • Ohba, M., H. Shiogama, T. Yokohata, and M. Watanabe, 2013: Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J. Climate, 26, 5169–5182, https://doi.org/10.1175/jcli-d-12-00471.1.

    Article  Google Scholar 

  • Otterå, O. H., 2008: Simulating the effects of the 1991 Mount Pinatubo volcanic eruption using the ARPEGE atmosphere general circulation model. Adv. Atmos. Sci., 25, 213–226, https://doi.org/10.1007/s00376-008-0213-3.

    Article  Google Scholar 

  • Otterå, O. H., M. Bentsen, H. Drange, and L. L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3, 688–694, https://doi.org/10.1038/NGEO955.

    Article  Google Scholar 

  • Pausata, F. S. R., L. Chafik, R. Caballero, and D. S. Battisti, 2015: Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl. Acad. Sci. U. S. A., 112, 13 784–13 788, https://doi.org/10.1073/pnas.1509153112.

    Article  Google Scholar 

  • Peng, Y. B., C. M. Shen, W.-C. Wang, and Y. Xu, 2010: Response of summer precipitation over eastern China to large volcanic eruptions. J. Climate, 23, 818–824, https://doi.org/10.1175/2009JCLI2950.1.

    Article  Google Scholar 

  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

    Google Scholar 

  • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123–146, https://doi.org/10.1007/s003820050009.

    Article  Google Scholar 

  • Power, S. B., and G. Kociuba, 2011: What caused the observed twentieth-century weakening of the walker circulation? J. Climate, 24, 6501–6514, https://doi.org/10.1175/2011JCLI 4101.1.

    Article  Google Scholar 

  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998RG000054.

    Article  Google Scholar 

  • Robock, A., and J. P. Mao, 1995: The volcanic signal in surface temperature observations. J. Climate, 8, 1086–1103, https://doi.org/10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2.

    Article  Google Scholar 

  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the southern oscillation. J. Climate, 2, 268–284, https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    Article  Google Scholar 

  • Sandeep, S., F. Stordal, P. D. Sardeshmukh, and G. P. Compo, 2014: Pacific Walker Circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103–117, https://doi.org/10.1007/s00382-014-2135-3.

    Article  Google Scholar 

  • Semtner, A. J., Jr., 1976: A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6, 379–389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2.

    Article  Google Scholar 

  • Schurer, A. P., S. F. B. Tett, and G. C. Hegerl, 2014: Small influence of solar variability on climate over the past millennium. Nat. Geosci., 7, 104–108, https://doi.org/10.1038/NGEO2040.

    Article  Google Scholar 

  • Schurer, A. P., S. F. B. Tett, M. Mineter, and G. C. Hegerl, 2013: Euroclim500—Causes of change in European mean and extreme climate over the past 500 years: Climate variable output from HadCM3 numerical model. NCAS British Atmospheric Data Centre.

    Google Scholar 

  • Shindell, D. T., G. A. Schmidt, M. E. Mann, and G. Faluvegi, 2004: Dynamic winter climate response to large tropical volcanic eruptions since 1600. J. Geophys. Res., 109, D05104, https://doi.org/10.1029/2003JD004151.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, https://doi.org/10.1175/2007jcli2100.1.

    Article  Google Scholar 

  • Sohn, B. J., S.-W. Yeh, J. Schmetz, and H.-J. Song, 2013: Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Climate Dyn., 40, 1721–1732, https://doi.org/10.1007/s00382-012-1484-z.

    Article  Google Scholar 

  • Stenchikov, G. L., I. Kirchner, A. Robock, H.-F. Graf, J. C. AntuñA, R. G. Grainger, A. Lambert, and L. Thomason, 1998: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 103, 13 837–13 857, https://doi.org/10.1029/98JD00693.

    Article  Google Scholar 

  • Stevenson, S., B. Otto-Bliesner, J. Fasullo, and E. Brady, 2016: “El Niño Like” hydroclimate responses to last millennium volcanic eruptions. J. Climate, 29, 2907–2921, https://doi.org/10.1175/jcli-d-15-0239.1.

    Article  Google Scholar 

  • Tanaka, H. L., N. Ishizaki, and A. Kitoh, 2004: Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus A, 56, 250–269, https://doi.org/10.3402/tellusa.v56i3.14410.

    Article  Google Scholar 

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340, https://doi.org/10.1175/JCLI4258.1.

    Article  Google Scholar 

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76, https://doi.org/10.1038/nature04744.

    Article  Google Scholar 

  • Veiga, J. A. P., V. B. Rao, and S. H. Franchito, 2005: Heat and moisture budgets of the Walker circulation and associated rainfall anomalies during El Niño events. International Journal of Climatology, 25, 193–213, https://doi.org/10.1002/joc.1115.

    Article  Google Scholar 

  • Wang, T., O. H. Otterå, Y. Q. Gao, and H. J. Wang, 2012: The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions. Climate Dyn., 39, 2917–2936, https://doi.org/10.1007/s00382-012-1373-5.

    Article  Google Scholar 

  • Whitaker, J. S., G. P. Compo, X. Wei, and T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 1190–1200, https://doi.org/10.1175/1520-0493(2004)132<1190:RWRUED>2.0.CO;2.

    Article  Google Scholar 

  • Williams, A. P., and C. Funk, 2011: A westward extension of the warm pool leads to a westward extension of theWalker circulation, drying eastern Africa. Climate Dyn., 37, 2417–2435, https://doi.org/10.1007/s00382-010-0984-y.

    Article  Google Scholar 

  • Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-Yr SST normals during 1871–2000. J. Climate, 16, 1601–1612, https://doi.org/10.1175/1520-0442-16.10.1601.

    Article  Google Scholar 

  • Zanchettin, D., C. Timmreck, H.-F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. H. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419–444, https://doi.org/10.1007/s00382-011-1167-1.

    Article  Google Scholar 

  • Zhang, L., and T. Li, 2017: Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the walker circulation changes under global warming. Climate Dyn., 48, 987–997, https://doi.org/10.1007/s00382-016-3123-6.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers and editor for their valuable comments and suggestions, which helped improve the quality of this paper significantly. This research was supported by the National Key R&D Program of China (Grant No. 2016YFA0600701), the National Natural Science Foundation of China (Grant Nos. 41661144005, 41575086 and 41320104007), and the CAS–PKU Joint Research Program. The authors are grateful to Dr. Schurer A. P. for providing the coupled model output.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Electronic supplementary material

376_2017_7134_MOESM1_ESM.pdf

Electronic Supplementary Material to: Interannual Weakening of the Tropical PacificWalker Circulation Due to Strong Tropical Volcanism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, J., Wang, T., Wang, H. et al. Interannual Weakening of the Tropical Pacific Walker Circulation Due to Strong Tropical Volcanism. Adv. Atmos. Sci. 35, 645–658 (2018). https://doi.org/10.1007/s00376-017-7134-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7134-y

Key words

关键词

Navigation